

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Dottorato di Ricerca in Ingegneria dell’Informazione

Unsupervised Learning Algorithms
for Intrusion Detection

Tesi di dottorato di:

Stefano Zanero

Relatore:
Prof. Giuseppe Serazzi

Tutore:
Prof. Marco Colombetti

Coordinatore del programma di dottorato:
Prof. Stefano Crespi Reghizzi

XVIII Ciclo

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 I 20133 — Milano

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Dottorato di Ricerca in Ingegneria dell’Informazione

Unsupervised Learning Algorithms
for Intrusion Detection

Doctoral Dissertation of:

Stefano Zanero

Advisor:
Prof. Giuseppe Serazzi

Tutor:
Prof. Marco Colombetti

Supervisor of the Doctoral Program:
Prof. Stefano Crespi Reghizzi

XVIII Edition

To my mother, who has dedicated her life to me.

To all of my friends, who are sharing it with me.

And in loving memory of my father

your blessing has been with me for the past 17 years.

Acknowledgments

This work has begun to shape into its current form as my master’s
graduation thesis, and then slowly evolved to become the focus of my
research years as a doctoral candidate at the Politecnico di Milano uni-
versity. Thus, it is really difficult to thank all of the people who directly
or indirectly contributed to the development of this work.

A first acknowledgment is for my advisor, professor Giuseppe Serazzi,
who has supported me during this three years without restraining me in
any way, letting me explore what I really wanted most. Professor Sergio
M. Savaresi, my former advisor during my master’s thesis development,
has also played an important role in making me understand what re-
search is, and why it can be loved. Both constantly gave me support,
ideas, and also corrections, whenever corrections were needed.

A huge number of people contributed ideas and suggestions, or cri-
tiques, to my work on unsupervised learning techniques for intrusion
detection. It is impossible to thank each one of them, but some deserve
a special acknowledgment:

• My colleague Giuliano Casale, who has been a tireless target for
my questions and doubts, and who has peer reviewed most of my
work, sometimes being duly harsh with me.

• My colleague Davide Balzarotti, with whom I discussed intrusion
detection and security issues in a lot of informal sessions over a
number of cups of coffee.

• My tireless students Matteo F. Zazzetta, Federico Maggi and Da-
vide Veneziano, for their invaluable support in software develop-
ment and lab testing, and for having found all the real-world bugs
in my nice theories.

• William Robertson, a Ph.D. student at UCSB, for helping us out
greatly with LibAnomaly and SyscallAnomaly.

• Dr. Matteo Matteucci for his help in understanding various critical
points related to learning and neural algorithms.

vii

• Prof. Salvatore J. Stolfo, for comments and critiques on an early
paper on this work.

• Dr. Marcus J. Ranum and Dr. Tina Bird of the “Log Analy-
sis” mailing list and workgroup, along with other participants, for
helping me in understanding the real world needs for intrusion
detection systems.

• Mr. Jeff Moss of Black Hat, Inc. and Mr. Dragos Ruiu, organizer
of the CanSecWest symposium, for having invited me to speak
of my work in two of the most important and recognized forums
for applied security research; I also need to thank all the speakers
and the attendees that during such events contributed suggestions,
ideas, and corrections.

My tutor, professor Marco Colombetti, was indeed the first to help
me study Intrusion Detection Systems under a behavioral point of view,
which will be recalled also in this thesis. For this portion of the work,
I need to thank Dr. Marzia Possenti, M.D., and professor George W.
Barlow of the Department of Integrative Biology at U.C. Berkeley for
their support.

Most of this work was supported by the Italian FIRB Project “Per-
formance evaluation for complex systems”, and I need to warmly thank
professor M. C. Calzarossa, the principal investigator of the project, for
this. Without her support, and the support of the project, most of what
is described here would have never been done.

A warm “thank you” goes also to professor Giovanni Vigna, of U.C.
Santa Barbara, for accepting to review this thesis work, and also for
his earlier suggestions and support. He has been supportive, and at the
same time constructively criticized many of my assumptions and outright
mistakes. Claudio Criscione also helped me in reviewing this work. Part
of the images contained in this thesis were carefully redesigned on my
early sketches by Federico Maggi, improving them a lot. Thanks!

I need to thank also the friends, students and colleagues who sup-
ported me throughout this work, by handling work issues or rearranging
schedules and meetings to help me going forth in my research: Alvise
Biffi, Luca Carettoni, Claudio Merloni. A special thank you, for the
same reason, goes to prof. Andrea Monti of the University of Chieti.

“Tower of Hanoi”, the CTF (Capture the Flag) student team of the
Politecnico di Milano university, also deserves a mention. Being your
coach through the three editions of the International CTF contest has
been a fun and challenging experience. And a very rewarding one, too.

viii

To all the others (you know who you are) who have contributed to
this work an idea, a suggestion, who have listened to me, or who simply
still bear with me despite my flawed character, to all of you, thank you.
This work, and my life, would not be the same without you all.

ix

Abstract

This work summarizes our research on the topic of the application of
unsupervised learning algorithms to the problem of intrusion detection.

We introduce briefly the key concepts and problems of information
security, and we characterize the main types of attacks against networked
computer systems. This analysis brings us naturally to the problem of
tamper evidence in computer systems, and to the definition of intrusion
detection.

We analyze the different technologies and types of intrusion detection
systems, the problems and open issues to be solved, and the state of
the art of the research in the field, focusing on earlier studies on the
application of unsupervised learning algorithms to intrusion detection.

We introduce then our research results, both in network and host
based intrusion detection. We propose a novel, two tier architecture
for network intrusion detection, capable of clustering packet payloads
and correlate anomalies in the packet stream. We show the experiments
we conducted on such architecture and give performance results and
compare our achievements with other comparable existing systems.

We also propose a framework for detecting anomalous system calls in
an operating system, capable of tracing anomalies both in the parame-
ters of system calls and in their sequence, through the use of statistical
models, clustering and a Markov Chain model used for time correlation.
We show the results such system obtains and compare them with earlier
studies.

xi

Sommario

Questo lavoro di tesi riassume i risultati del nostro lavoro di ricerca nel
campo dell’applicazione di algoritmi di apprendimento non supervision-
ato per la creazione di strumenti di intrusion detection (individuazione
delle intrusioni).

Vengono innanzitutto presentati alcuni concetti e problemi chiave nel
campo della sicurezza dell’informazione, e vengono caratterizzati, in bre-
ve, i tipi principali di attacchi contro i sistemi informatici in rete. Da
questa analisi deriva, in modo naturale, il problema dell’evidenza della
compromissione di sistemi informatici, e il problema dell’individuazione
delle intrusioni.

Vengono poi analizzate le diverse tecnologie e tipologie di sistemi di
intrusion detection esistenti, le relative problematiche e gli argomenti di
ricerca, e lo stato dell’arte del campo, focalizzandosi sugli studi prece-
denti riguardanti l’applicazione di algoritmi non supervisionati di ap-
prendimento.

Vengono di seguito presentati i risultati della nostra ricerca, sia nel
campo dei sistemi network based che nel campo dei sistemi host based.
Proponiamo un’architettura innovativa a due livelli per la creazione di
un network intrusion detection system, capace di applicare tecniche di
clustering al payload dei pacchetti e di tracciare le anomalie nel flusso.
Forniamo i risultati degli esperimenti da noi condotti su tale architet-
tura, e ne paragoniamo le prestazioni ad altri sistemi dello stesso tipo
esistenti in letteratura.

Proponiamo anche un framework per identificare chiamate di sistema
anomale, capace di tracciare le anomalie sia nel contenuto dei parametri
delle chiamate, sia nella loro sequenza, tramite l’uso di modelli statistici,
di tecniche di clustering e di un modello a catena di Markov usato per
la correlazione temporale. Descriviamo i risultati che questo sistema
ottiene e li paragoniamo a quelli ottenuti in studi precedenti.

xiii

Contents

1 Introduction 1
1.1 Motivations: the need for Information Security 1
1.2 Our research focus: Unsupervised Learning for Intrusion

Detection . 2
1.3 Research objectives and original contributions 3
1.4 Structure of the work . 4

2 Computer and Information Security: an Overview 7
2.1 Formal definition of Information Security 7

2.1.1 The C.I.A. paradigm 7
2.1.2 The A.A.A. architecture: access control methods

and paradigms . 8
2.2 Applied Computer Security: Vulnerabilities, Risk and As-

surance . 10
2.2.1 Requirements, Specifications, Implementation: where

vulnerabilities appear 10
2.2.2 Finding Vulnerabilities: Program Testing 11
2.2.3 Distinction between threats, vulnerabilities and risk 13
2.2.4 The Unpatchable Vulnerability: People 14

2.3 Components of a Secure System Architecture 15
2.3.1 Planning a security system: policies and controls . 15
2.3.2 Security by design 15
2.3.3 Architectural Security 16
2.3.4 Disaster Recovery and Business Continuity 16

2.4 A taxonomy of threats: attackers and attacks 17
2.4.1 Motivations and former studies 17
2.4.2 Attackers and their targets 18
2.4.3 Attacks: methods, tools and results 19
2.4.4 Conclusive remarks on attack taxonomies 20

2.5 Intrusion Detection and Tamper Evidence 21

3 Learning Algorithms for Intrusion Detection Systems: State
of the Art 23

xv

Contents

3.1 What is an Intrusion Detection System ? 23
3.2 A taxonomy of Intrusion Detection System approaches . . 23

3.2.1 Anomaly based vs. Misuse based 23
3.2.2 Network based vs. Host based 26
3.2.3 Centralized vs. Distributed Architectures 28

3.3 Main Issues in Intrusion Detection 28
3.3.1 Comprehensiveness of model 28
3.3.2 Zero-day attack recognition 29
3.3.3 Intrinsic security and survivability 29
3.3.4 Flexibility and Usability Issues 30
3.3.5 Scalability and Throughput 30
3.3.6 Ambiguity in event reconstruction 30
3.3.7 Target based correlation 32
3.3.8 Reactivity and Intrusion Prevention 32

3.4 Learning Algorithms: supervised and unsupervised 33
3.5 Anomaly Detection Systems: State of the Art 34

3.5.1 State of the art in misuse detection 34
3.5.2 Host based anomaly detection 35
3.5.3 Network based anomaly detection 39

3.6 Evaluation of Intrusion Detection Systems 42

4 Network Intrusion Detection Applications 45
4.1 Network Intrusion Detection Problem Statement 45
4.2 A two-tier architecture for Intrusion Detection 46
4.3 Payload Clustering Techniques 48

4.3.1 Requirements and algorithms selection 48
4.3.2 An introduction to Self Organizing Maps 53
4.3.3 Using a SOM on high-dimensional data 57
4.3.4 Meaningful metrics in high-dimensional spaces . . 61
4.3.5 Experimental results: Pattern Recognition Capa-

bilities of the First Tier 62
4.4 Multivariate Time Series Outlier Detection 67

4.4.1 Requirements and available algorithms 67
4.4.2 MUSCLES . 70
4.4.3 SmartSifter . 72
4.4.4 Feature selection 77

4.5 Evaluation of the proposed architecture 78
4.5.1 Our results . 78
4.5.2 Comparison with SmartSifter 79
4.5.3 Comparison with PAYL 80
4.5.4 Resistance to fragmentation and basic evasion tech-

niques . 82

xvi

Contents

4.6 Questioning the validity of the DARPA dataset 82

5 Host Based Intrusion Detection Applications 87
5.1 A Framework for Behavioral Detection 87

5.1.1 Introduction to Behavior Detection problems . . . 87
5.1.2 Motivations for action and action selection 88
5.1.3 Fixed action patterns, modal action patterns, and

ethograms . 89
5.1.4 A methodology for behavioral detection 90
5.1.5 Representing behavior: Markov Models 91
5.1.6 A Bayesian algorithm for building Markovian mod-

els of behavior . 92
5.1.7 A proof-of-concept behavior detector 94

5.2 System Call Argument Analysis: the LibAnomaly frame-
work . 97
5.2.1 LibAnomaly and SyscallAnomaly: an introduction 97
5.2.2 LibAnomaly models: design and implementation . 97
5.2.3 SyscallAnomaly: design and implementation . . . 100
5.2.4 Testing SyscallAnomaly on the IDEVAL dataset . 102
5.2.5 A detailed analysis of experiments and false positives104
5.2.6 A theoretical critique to SyscallAnomaly 114

5.3 Beyond SyscallAnomaly: our proposal 115
5.3.1 Motivations for our proposal 115
5.3.2 Clustering of system calls 116
5.3.3 Clustering models and distances for each type of

argument . 124
5.3.4 Optimizations introduced on the clustering algo-

rithm . 129
5.3.5 Adding correlation: introduction of a Markov model130

5.4 Questioning again the validity of the DARPA dataset . . 132
5.4.1 Limited variability and predictability 132
5.4.2 Outdated software and attacks 133
5.4.3 String Length as the sole indicator 134

5.5 Result analysis . 134

6 Conclusions and future work 137

xvii

List of Figures

2.1 The number of vulnerabilities discovered in years 2001–2006 12

2.2 The CERT/CC Intrusion Process Taxonomy 17

2.3 The relationship among attackers’ motivations and goals . 18

2.4 Attack Methodologies: a graphical representation 19

2.5 Escalation paths for an aggressor and for a normal user . 20

2.6 The complete diagram of the intrusion process 21

3.1 Distribution of the values of field Total Length in a por-
tion of the IDEVAL dataset 41

3.2 Examples of ROC curves 43

4.1 Scheme of the overall architecture of the network based
IDS . 47

4.2 Comparison between the classification of normal traffic
(above) and Nessus traffic (below) by a 10x10 SOM network 51

4.3 Comparison between the classification of normal traffic
(above) and Nessus traffic (below) over 50 classes by a
principal direction algorithm 51

4.4 Comparison between the classification of normal traffic
(above) and Nessus traffic (below) over 50 classes by a
K-means algorithm . 53

4.5 Two variants of neuron meshes in Γ 54

4.6 Visual representation of different proximity functions: the
darker the color, the higher the adaptation factor 55

4.7 Comparison between the classification of a window of traf-
fic and the traffic destined to port 21/TCP by a 10x10
SOM with our modified algorithm. 63

4.8 Classification of payloads obtained by a non-heuristic SOM,
on the whole traffic and on two specific ports 64

4.9 Classification of payloads obtained by a heuristic SOM,
on the whole traffic and on two specific ports 65

4.10 A comparison between the classification of attack pay-
loads and normal traffic payloads on port 80/TCP 67

xix

List of Figures

4.11 Plot of function f(t) = 1−(1−rh)t

rh
. 74

4.12 Distribution of scores . 77
4.13 ROC curves comparing the behavior of SmartSifter with

(lighter) and without (darker) our architecture 80
4.14 Average of byte values for three different models Mi,j . . 81

5.1 Cumulative distribution of commands 95
5.2 Information criteria: MDL and BIC 95
5.3 Class tree for LibAnomaly models 98
5.4 Minimum distance between clusters in function of the cur-

rent step . 122
5.5 Probabilistic tree example 126
5.6 Example of Markov model 131
5.7 telnetd: distribution of distance among two execve sys-

tem calls . 133

xx

List of Tables

3.1 Comparison between strengths and weaknesses of anomaly
based and misuse based IDSs 24

4.1 Throughput and errors during runtime phase, calculated
over a window of 1.000.000 packets. The values are av-
erages over multiple runs of the algorithm on different
portions of the dataset . 60

4.2 Detection rates and false positive rates for our prototype . 79

4.3 Detection rates and false positive rates with high frag-
mentation and use of evasion techniques 83

5.1 Performance of our algorithm vs. naive application of
Markov Models . 96

5.2 Recorded syscalls and applied models in SyscallAnomaly . 103

5.3 Experimental Evaluation of SyscallAnomaly on the IDE-
VAL dataset . 104

5.4 True positive on fdformat: buffer overflow attack instance105

5.5 True positive on fdformat: opening localization file . . . 106

5.6 True positive on eject: buffer overflow on execve 107

5.7 False positive on eject: use of a new unit 107

5.8 True positive on ps: opening /tmp/foo 109

5.9 False positive on ps: different command line arguments . 109

5.10 False positive on ps: zone file opening 109

5.11 False positive on ftpd: opening a file never opened before 110

5.12 False positive ftpd: opening /etc/shadow with a mode
different than usual . 111

5.13 False positive on telnetd: opening syslog.pid 112

5.14 False positive on sendmail: user seen for the first time . . 113

5.15 False positive on sendmail: operations in /var/mail . . . 113

5.16 Behavior of SyscallAnomaly with and without the Struc-
tural Inference Model . 115

5.17 Percentage of open syscalls in the IDEVAL dataset 118

5.18 Relative frequencies of three open syscalls 118

xxi

List of Tables

5.19 Distances obtained by the example in Table 5.18 118
5.20 Configuration of parameters used for the experiment . . . 120
5.21 Distances from libc.so.1 in program fdformat 120
5.22 Cluster generation process for fdformat 121
5.23 Clusters generated for program ps 123
5.24 Association of models to System Call Arguments in our

prototype . 128
5.25 Cluster validation process 129
5.26 RAM memory reduction through our optimizations 129
5.27 Execution time reduction through our optimizations and

use of the heuristic . 129
5.28 Number of instances of execution in the IDEVAL dataset 132
5.29 fdformat: attack and consequences 135

xxii

1 Introduction

1.1 Motivations: the need for Information Security

In the modern world, broader and broader parts of our lives are based
upon, managed by, or transmitted with networked computer systems.
While this is bringing wonderful insights and unforeseen advancements
to computer science, there is also a widespread and legitimate concern
about the security of such systems, which has been heightened by the
tragic events of 9/11/2001, and by the ensuing international develop-
ments. Even if computer technologies were not directly involved in any
attack until today, there is a widespread consensus between military and
intelligence analysts that digital warfare and cyberterrorism will have an
increasing role in the future.

Information is today the most important business asset [1], along with
the processes, systems, and networks that store, manage and retrieve it.
Thus, achieving an appropriate level of “information security” can be
viewed as essential in order to maintain competitive edge (a “business
enabler” technology), besides compliance with legal requirements and
corporate image issues.

Organizations and their information systems and networks are faced
with security threats from a wide range of sources, including computer-
assisted fraud, espionage, sabotage, vandalism, as well as acts of God.
Attack techniques have become more common, more ambitious, and
increasingly sophisticated. Information security is important to busi-
nesses, public organizations, and to protect critical infrastructures at
a national or global level. The interconnection of public and private
networks and the sharing of information resources increased the diffi-
culty of achieving access control. The trend to distributed computing
has also weakened the effectiveness of central, specialist control. Most
information systems have not been designed from the ground up to be
secure. Security cannot be achieved through technical means alone, as
it is an inherently human and social problem, and therefore needs to be
supported by appropriate management and procedures.

1

1 Introduction

1.2 Our research focus: Unsupervised Learning for
Intrusion Detection

Our research work focused on the analysis and development of technolo-
gies based on unsupervised learning algorithm for the class of problems
known as intrusion detection. Intrusion detection systems are compo-
nents designed for making an information system tamper-evident, i.e. to
detect behaviors which violate the system’s security policy (extensively
denoted as “intrusions”, including into this broad category also insider
abuse or privilege escalation).

An Intrusion Detection System is the computer system equivalent of a
burglar alarm. The concept was introduced in 1980 by J.P. Anderson [2],
and has subsequently been the focus of a wide area of research.

Two major classes of Intrusion Detection systems exist, based on a
different approach to the problem: anomaly detection systems, which
try to create a model of normal behavior, and flags as suspicious any
deviation; or misuse detection systems, which use a knowledge base to
recognize directly the signatures of intrusion attempts.

These systems have symmetric strengths and weaknesses. Anomaly
detection systems don’t require “a priori” knowledge of the attacks, be-
ing theoretically able to detect any type of misbehavior in a statistical
way. On the other hand, they proved difficult to build, they usually need
a long training phase on the system, and are also traditionally known
to be prone to errors and false positives.

Misuse based systems, vice versa, require an extensive study of at-
tacks in order to build and keep up to date the knowledge base: this
also implies they are powerless against new, “zero-day” attacks [3], and
subject to a wide array of evasion techniques [4]. They are slightly more
resistant against the false positive problem (but misconfiguration and a
huge number of unwanted alerts can destroy this advantage), and are
also much simpler to conceive and build.

Most commercial intrusion detection systems are substantially misuse
based. Anomaly based systems have been mostly developed in aca-
demic environments, and mostly in an host based fashion, while today
network based IDSs are dominant. However, the continuous evolution of
the types of attacks against computer networks suggests that we need
a paradigmatic shift from misuse based intrusion detection system to
anomaly based ones.

While a number of earlier attempts in this direction have been quite
unsuccessful in the commercial world, we think that the developments
in learning algorithms, the availability of computational power, and the

2

1.3 Research objectives and original contributions

new trends in information security suggest that new research in the field
of anomaly detection is indeed promising.

Unsupervised learning algorithms are natural candidates for the task,
for a number of reasons:

Outlier detection: unsupervised learning techniques are capable of iden-
tifying “strange” observations in a wide range of phenomena; this
is a characteristic we definitely need in an anomaly based IDS.

Generalization: unsupervised learning techniques are also quite robust
and therefore can show better resistance to polymorphic attacks.

Unsupervised learning: we wanted to create a model totally orthogonal
to the misuse based model, which is dependent on the input of
expert knowledge, so we tried to develop an IDS which needed no
a priori knowledge inputs.

Adaptation: a learning algorithm can be tuned totally to the specific
network or system it operates into, which is also an important
feature to reduce the number of false positives and optimize the
detection rate.

1.3 Research objectives and original contributions

As we will see in the following, while a vast literature exists on the ap-
plication of supervised learning methods to intrusion detection, there
are still no convincing uses of unsupervised learning techniques (partic-
ularly in the network based field). By “convincing” we mean extensively
tested architectures, that have been designed by choosing, step by step,
which algorithm fits best on a particular type of data, instead of trying
to “force” an algorithm to work on suitably prepared data.

Our objectives were:

• To propose realistic architectures, efficient and properly structured
to be really deployed.

• To demonstrate, step by step, our assumptions and assertions on
realistic data.

• To let the domain knowledge of the computer security field guide
us to the choice of proper algorithms, rather than trying to fit the
problem into a particular algorithm class.

• To implement a working prototype of our systems.

3

1 Introduction

In this thesis, we describe our implementation of a network based and
a host based anomaly detection IDS. Both systems have been prototyped
and tested on well known datasets and on real world data.

Our key original contributions (part of which have been published
by us in international conferences, but which never before appeared in
mainstream literature as of our knowledge) can be identified as follows:

• We propose a two-tier architecture to analyze network packets
overcoming the dimensionality problems which arise in the applica-
tion of unsupervised learning techniques to network based anomaly
detection.

• We consider performance issues and propose improvements and
heuristics to increase the throughput of Self Organizing Maps to
a rate suitable for online Intrusion Detection purposes.

• We propose an innovative host based system, based on the analysis
of both the arguments and the sequence of system calls in UNIX
or Linux processes.

• We carefully evaluate the detection rate and the false positive rates
of both systems against well known datasets, comparing the results
with benchmarks of state of the art systems described in previous
literature.

1.4 Structure of the work

The remainder of this work is organized as follows. In Chapter 2 we
introduce briefly the key concepts and problems of information secu-
rity, and we characterize the main types of attacks against networked
computer systems. This analysis brings us naturally to introduce the
problem of tamper evidence in computer systems, and thus the concept
of “intrusion detection”.

In Chapter 3 we analyze the different technologies and types of intru-
sion detection systems, the problems and open issues to be solve, and the
state of the art of the field, focusing on earlier studies on the application
of unsupervised learning algorithms to intrusion detection.

In Chapters 4 and 5 we introduce, respectively, our research in net-
work and host based applications of unsupervised learning to intrusion
detection. We show the experiments we conducted and the resulting
architectures we propose. For each type of system, we give performance
results, comparing our achievements with other comparable existing sys-
tems.

4

1.4 Structure of the work

Finally, in Chapter 6 we draw our conclusions, outlining the future
directions of this work.

5

2 Computer and Information
Security: an Overview

2.1 Formal definition of Information Security

2.1.1 The C.I.A. paradigm

Information is an asset that is essential to the operations of any orga-
nization, and consequently needs to be suitably protected. Information
security [5] is the discipline that deals with ensuring three fundamental
properties of information flowing through a system:

Confidentiality: the ability of a system to make its resources accessible
only to the parties authorized to access them.

Integrity: the ability of a system to make it possible only to authorized
parties to modify its resources and data, and only in authorized
ways which are consistent with the functions performed by the
system.

Availability: a rightful request to access information must never be de-
nied, and must be satisfied in a timely manner.

This paradigm is known as the C.I.A. paradigm. Some people add
other goals in their definition of Information Security, such as authen-
ticity, accountability, non-repudiation, safety and reliability. However,
the general consensus is that these are either a consequence of the three
properties defined above, or a mean to attain them.

Also, as currently most information in the world is processed through
computer systems, it is common to use the term “information security”
also to denote “computer security”; but academically, information se-
curity spans to all the processes of handling and storing information.
Information can be printed on paper, stored electronically, transmitted
by post or by using electronic means, shown on films, or spoken in con-
versation. The U.S. National Information Systems Security Glossary
defines Information systems security (INFOSEC) as:

7

2 Computer and Information Security: an Overview

“the protection of information systems against unauthorized
access to or modification of information, whether in storage,
processing or transit, and against the denial of service to
authorized users or the provision of service to unauthorized
users, including those measures necessary to detect, docu-
ment, and counter such threats.”

This observation on information pervasiveness is especially important
in the increasingly interconnected business environment. As a result of
it, information is exposed to a growing number and a wider variety of
threats and vulnerabilities, which often have nothing to do with com-
puter systems at all.

In this work, however, we will deal mostly with computer security,
i.e. the security of information handled by computer systems, and not
information systems in general.

2.1.2 The A.A.A. architecture: access control methods and
paradigms

The logical paradigm of confidentiality, integrity and availability of data
and information contained in computer system is usually implemented
with what is known as an A.A.A. architecture:

Authentication: the user is properly identified in some manner, and an
access profile is associated with him.

Authorization: each operation and task activated by the user is subject
to a set of constraints, given by the privileges he has to access
system assets.

Accounting: operations are logged and reviewed with a proper process,
in order to ensure that no violations of the C.I.A. paradigm have
happened.

The A.A.A. conceptual taxonomy applies to networked operating sys-
tems and network services, but also to network control systems such as
firewalls and VPN architectures (which are ways to allow or deny access
to certain network services to certain hosts). This happens because the
idea of authentication and authorization is orthogonal to most business
processes and network services.

Authentication can be performed through various techniques, often
divided into using something the user knows (such as a password), some-
thing the user has (a token, a smart card or any other sort of key object),

8

2.1 Formal definition of Information Security

or what the user is (through biometric techniques such as fingerprint or
iris scans).

Authentication and authorization are both concerned with the proper
identification of users and the attribution of appropriate privileges for
access to system assets.

There are two main paradigms for the management of this association:
DAC (Discretionary Access Control) and MAC (Mandatory Access Con-
trol). A third paradigm is called RBAC (Role Based Access Control).
While a complete review of these systems is beyond the scope of this
work, we would like to briefly recall the key concepts.

DAC systems are simple: each object has an owner, and the owner
can fully control the access privileges, granting and revoking rights to
other users inside the system, up to the possibility of transferring the
ownership privileges themselves to someone else. The system adminis-
trator manages system objects, and can usually preempt any privilege
restriction on user objects.

Most commercial and free operating system in use nowadays (includ-
ing all the Windows family systems, and most Linux and *BSD flavors)
are DAC-based.

In a MAC system instead objects have a secrecy level (or more secrecy
levels in various categories). Users instead have an access level (or a set
of access levels). A “security officer” sets secrecy levels and access levels
system-wide. One of the most famous MAC models, the Bell-LaPadula
model [6] uses the following rules for granting or denying access:

1. Security rule: an user cannot read informations which have an
higher secrecy level than his access level (“no read up”).

2. *-property: an user cannot move information from an higher access
level to a lower access level, but can move them upwards (“no write
down”).

In fact, this is a simplification, since the existence of set of access levels
introduces a lattice of privileges where the concept of “above” and “be-
low” (i.e., a total order relation) must be substituted by the concept of
dominance (i.e. a partial order relation).

Since the natural entropy of this system would lead most informa-
tion to be escalated towards more secret levels, an additional concept is
needed: a trusted subject such as the security officer can, in fact, vio-
late the rules and “declassify” information towards lower secrecy levels.
These types of systems, however, tend to be very complex to manage: in
fact, usually, operating systems use MAC just for data and documents
rather than for the whole of the system files.

9

2 Computer and Information Security: an Overview

Another widely studied type of systems is RBAC (Role Based Access
Control). In these systems, access privileges are assigned to different
roles, and each user fits in one or more roles based on their occupation.
See [7] for a detailed review of literature in this area.

The two fundamental means for expressing privileges are access con-
trol lists (ACLs) and capabilities. Access Control Lists are inherently
more affine to the DAC model, and are expressed as a list of all the en-
tities permitted access to each object in the system. On the other hand,
Capabilities assert, for each user, the type of operations he is allowed to
perform, and are inherently more useful in a MAC environment. The
semantics of ACLs have been proven to be insecure in many situations,
causing uncertainty and faults. Unfortunately, for historical reasons,
capabilities have been mostly restricted to research or customized oper-
ating systems, while the commercial ones still use ACLs. A reason for
the lack of adoption of capabilities is that ACLs appeared to offer a quick
way to “add” security enforcement features without pervasive redesign
of the existing operating system and hardware. However, TrustedSolaris
or SELinux are examples of existing standard operating systems which
support a MAC model as well as capabilities.

2.2 Applied Computer Security: Vulnerabilities,

Risk and Assurance

2.2.1 Requirements, Specifications, Implementation: where
vulnerabilities appear

In software engineering terms, we could say that the C.I.A. paradigm
belongs to the world of requirements, stating the high-level goals related
with security of information; the A.A.A. architecture and components
are specifications of a software and hardware system architecture which
strives to implement those requirements. Then, of course, security sys-
tems are the real world implementations of these specifications.

The trust we can place in this process can be expressed in terms of
“assurance” [8]. Assurance can be defined as the basis for confidence that
the security measures, both technical and operational, work as intended
to protect the system and the information in processes and that the
security objectives of integrity, availability and confidentiality have been
“adequately” met by a specific implementation.

In a perfect world, implementation would be perfectly respondent to
specifications, and specifications would meet and exceed requirements.
However, as it is widely evident, we do not live in a perfect world [9].

10

2.2 Applied Computer Security: Vulnerabilities, Risk and Assurance

Therefore, several orders of weaknesses afflict the path between require-
ments and implementation:

1. Analysis weaknesses in stating the requirements of confidentiality,
integrity and availability for the information assets;

2. Design weaknesses while translating such high-level requirements
into specifications in term of policies and architectures for authen-
tication, authorization and auditing;

3. Implementation weaknesses while coding, deploying and configur-
ing security systems;

In addition, since security requirements and their interaction with a
forever changing environment are not stable, there is a need for a proper
cyclic development model for maintaining the security system adherent
to the changing business needs.

All these elements are well known in the software engineering field,
and a lot of experience and best practices coming from that area can
be applied. As we know, formal specification languages are needed to
correctly design systems, but security practitioners have traditionally
denied such need, preferring a more hacker-like approach (often denoted
as “penetrate and patch”).

However, as systems have grown larger, and more interconnected, this
is no longer acceptable: complex systems need an appropriate, complete
security policy specification, and this can be done fairly using common
formal specification languages [10]. Other works have explored the use
of different logical structures to express specification (as an example,
lattice-based policies [11]).

2.2.2 Finding Vulnerabilities: Program Testing

Real systems are not perfectly respondent to the three requirements of
security. The difficulty of ensuring the adherence of a program to its
specifications is well known, and well expressed by Dijkstra [12]:

Program testing can be used to show the presence of bugs,
but never to show their absence

This trivially descends from well-known results of theoretical computer
science, such as the halting theorem [13].

Additionally, while normal specifications are validated thinking of “co-
operative” users and environment (that is, we do not assume that a user
actively wants to break our specifications, or that he would try to cause

11

2 Computer and Information Security: an Overview

Figure 2.1: The number of vulnerabilities discovered in years 2001–2006

the program to fail unexpectedly), security specifications often need to
prove their strength against a user who willingly tries to break or bend
them, and who is often as skilled as (or even more skilled than) the
person who designed them.

There are interesting proofs that most softwares, even if well designed,
behaves anomalously under stress conditions: an interesting example
is the utility FUZZ [14], which can be used to send the equivalent of
white noise to applications; a tool called FIST (Fault Injection Security
Tool) [15] uses instead a more evolved methodology called AVA (Adap-
tive vulnerability Analysis), which integrates white-box and black-box
testing concepts to show even more weaknesses.

Even outside academical frames, the sheer number of vulnerabilities
reported to public vulnerability forums (see Figure 2.1, which has been
drawn from [16]) demonstrates that security vulnerabilities are indeed
present, and that the discovery of such problems is in continuous growth.

Thanks to the principle of full disclosure this has become increasingly
evident. Applying full disclosure [17] means to fully disclose to the public
all the details of security problems when they arise, including a complete
description of the vulnerability and how to detect and exploit it.

It is a philosophy of security management, which opposes the idea
of “security through obscurity”. The theory is that releasing vulnera-
bility information results in quicker reaction by vendors and generally
improves over time the security of systems. Security is improved be-

12

2.2 Applied Computer Security: Vulnerabilities, Risk and Assurance

cause the window of exposure, the amount of time the vulnerability
is known at least by some, and still unpatched, is reduced. Most re-
searchers apply a so-called “responsible disclosure” policy, pre-alerting
the vendor and coordinating vulnerability disclosure with a patch re-
lease. Disclosure is often achieved via public mailing lists such as Bug-
traq (www.securityfocus.com).

Full disclosure was developed in reaction to the laziness of vendors in
patching security vulnerabilities, relying on security through obscurity.
Disclosure has often been the subject of heathed debates [18], but it’s
not new to the computer security scene. The issue of full disclosure was
first raised in the context of locksmithing, in a 19th century controversy
regarding whether weaknesses in lock systems should be kept secret in
the locksmithing community, or revealed to the public. However, it is
beyond the scope of this work to discuss such issues.

Getting back to our point, we do not wish to underline the short-
comings of traditional information security and software design prac-
tices, but to stress that every software, in the day to day practice,
shows anomalous behaviors. In the security domain, anomalous be-
havior means that the access controls do not ensure anymore that the
properties of confidentiality, integrity and availability are correctly re-
spected.

2.2.3 Distinction between threats, vulnerabilities and risk

It should be noted that information security is, by itself, a science of
uncertainty. As Bruce Schneier has it, “Information security is all about
risk management”: in other words, absolute security does not exist. The
level of information security sought in any particular situation should
therefore be commensurate with the value of the information and the
loss, financial or otherwise, that might accrue from its improper use,
disclosure, degradation or denial.

Various ISO standards [1, 19, 20], clearly defines the difference be-
tween risk, threats and vulnerabilities:

Risk: combination of the probability of an event and its consequence;

Threat: a potential cause of an unwanted incident, which may result in
harm to a system or organization;

Vulnerability: a weakness of an asset or group of assets that can be
exploited by one or more threats.

Information security tasks are all related to managing and reducing
the risks related to information usage in an organization, usually, but

13

2 Computer and Information Security: an Overview

not always, by reducing or handling vulnerabilities or threats. So, it is
wrong to think of security in terms of vulnerability reduction. Security
is a component of the organizational risk management process (a set of
coordinated activities to direct and control an organization with regard
to risk [19]). In other words, information security is the protection of
information from a wide range of threats in order to ensure continu-
ity, minimize risk, and maximize return on investments and business
opportunities.

Components of a proper risk management process are:

Risk analysis: the systematic use of information to identify risk sources
and to estimate the risk;

Risk evaluation: the process of comparing the estimated risk against
given risk criteria to determine the significance of the risk;

Risk assessment: the overall process of risk analysis and risk evaluation;

Risk treatment: process of selection and implementation of measures
to reduce risks.

2.2.4 The Unpatchable Vulnerability: People

In the previous sections, we have voluntarily omitted the weakest link
in the security of information systems, the unpatchable vulnerability of
any security measure: the people, the users of our information system.

As we have seen, the traditional A.A.A. paradigm heavily relies on
a proper authentication of users. We have also briefly seen the three
classes of authentication methods (something you know, something you
have, something you are). Passwords are still the most common, albeit
insecure, form of authentication. Passwords can be shared (even inno-
cently, just think about any university computer lab); they are usually
badly chosen (short and easily guessable passwords are more comfortable
to recall); they can be written down, often near the computer itself.

All these dramas have to do with user education to security, which
has been described as “pointless” by Marcus J. Ranum [21]. There is a
widespread problem of perception of security measures as being useful
to avoid or reduce a real risk: for instance, no one complains for the fact
that ATM withdrawal cards are PIN protected, but everyone complains
every time a new password is introduced for accessing a computer system
or application.

But apart from “distractions”, experts agree that users often are will-
ingly violating security measures [22]. Sometimes they do so with a
criminal intent, either because they are disgruntled by the organization

14

2.3 Components of a Secure System Architecture

or because they intend to commit some sort of white collar crime. Other
times, security measures are perceived as an annoyance, a distraction
from work, an intolerable intrusion into the personal workspace.

Finally, in many cases attackers abuse of user credulity in order to
bypass security measures: this is what is known as a “social engineer-
ing” technique. Among the greatest social engineers of all times we can
remind Kevin Mitnick, also known as “Condor”, one of the most fa-
mous American digital criminals of all times, who was the subject of a
nationwide manhunt by the FBI which became famous. Kevin Mitnick
confessed that his core skills were not technical, he simply contacted
people and convinced them to hand over their credentials.

2.3 Components of a Secure System Architecture

2.3.1 Planning a security system: policies and controls

Information security is achieved by implementing a suitable set of con-
trols, including policies, processes, procedures, organizational structures
and software and hardware functions. These controls need to be estab-
lished, implemented, monitored, reviewed and improved, where neces-
sary, to ensure that the specific security and business objectives of the
organization are met. This should be done in conjunction with other
business management processes [1].

A security policy is the overall intention and direction related to secu-
rity issues, as formally expressed by management [23]. A correct security
policy is the foundation of any secure system.

A security policy states, often formally, the high level requirements
and specifications of an organization security system.

2.3.2 Security by design

A system should be securely designed from the ground up, rather than
“secured” as an afterthought as often happens.

The first principle is enforcing privilege separation, i.e. giving any
entity in the system only the privileges that are needed for its function.
In this way, even if an attacker subverts one part of the system, fine-
grained security ensures that it is just as difficult for them to subvert
the rest.

Also, by breaking up the system into smaller components, the com-
plexity of each components is reduced, thus opening up the possibility
of formally proving the correctness of crucial software subsystems, e.g.
through model checking techniques. Where formal correctness proofs

15

2 Computer and Information Security: an Overview

are not possible, a rigorous use of code review and testing can still be
helpful in making modules as secure as possible.

This also enforces “defense in depth”, since more than one subsystem
needs to be compromised to compromise the security of the system and
the information it holds. Subsystems also should ideally be failsafe, and
the performance of the system should degrade gracefully while it is being
compromised or damaged.

Subsystems and systems should default to secure settings as much as
possible: it should take a deliberate decision on the part of legitimate
authorities in order to make them behave insecurely.

A wise usage of cryptographic techniques can also help to ensure con-
fidentiality and integrity in transmission or storage of information, as
well as source authentication and non-repudiation. However, it should
be kept in mind that cryptography is not, ultimately, the panacea for
solving any security problem [24, 25].

2.3.3 Architectural Security

Architectural security means designing a network in such a way that
makes it possible to correctly enforce a security policy on it. A firewall
is the system that can enforce an access control policy between two or
more networks. Various types and technologies of firewalls perform this
access control mechanism in different ways. Usually, firewalls by default
block all traffic which has not been specifically authorized. It is evident,
then, that a proper configuration is really what makes a firewall effective
or totally ineffective.

There are some threats that firewalls cannot protect against: for one,
firewalls cannot protect against attacks that don’t actually go through
them. This means, for instance, that dial-up connections from the inside
of the network, or towards the inside, cannot be controlled by a firewall.
All the same, a firewall does not protect against malicious users inside
the network, or against careless behavior by users.

Also, firewalls cannot usually distinguish between legitimate connec-
tions and connections carrying malware or exploit attempts.

2.3.4 Disaster Recovery and Business Continuity

Ensuring the availability of information also requires to plan for disas-
ter recovery options. This is usually obtained through the creation of
copies of data, called “backups”, on various type of media and technolo-
gies. Data are usually also shipped off-site, to account for geographic
disasters.

16

2.4 A taxonomy of threats: attackers and attacks

Figure 2.2: The CERT/CC Intrusion Process Taxonomy

Business continuity planning means taking this preparedness effort
one step further, and creating an architecture which besides saving data
ensures that applications and systems continue to function (usually in an
alternate site) should the primary site be destroyed or damaged (physi-
cally or electronically).

Usually disaster recovery and continuity strategies are evaluated on
the basis of two indicators:

Recovery Point Objective (RPO): the minimum target level of opera-
tivity that can be restored with the strategies in place. For in-
stance, in case of backups, how “old” the restored data will be in
the worst case;

Recovery Time Objective (RTO): the maximum time needed to re-
store the applications and the data to the operational level ap-
pointed by the RPO;

2.4 A taxonomy of threats: attackers and attacks

2.4.1 Motivations and former studies

To create a complete taxonomy of threats, attacks, and attackers of in-
formation systems is well beyond the scope of this work, and an open
field of research. We gather here together our observations on the mat-
ter, along with some contributions from published research [26, 27, 28,
29]. We integrate them into the framework of what seems to be one
of the most interesting attempts to describe a taxonomy for computer
attacks, developed at CERT/CC [30].

In this taxonomy, the security incident is correctly modeled as a pro-
cess with multiple stages and components, as shown in Figure 2.2. We
modify this framework to express our own observations and opinions on
the matter.

17

2 Computer and Information Security: an OverviewD i s g r u n t e de m p l o y e e sE s p e r t sS c r i p t k i d d i e sS u b j e c t s
A t t a c k e r sC a r e l e s st r a s g r e s s o r sI nt ernalE xt ernal D a t a

M o t i v a t i o n s
G o a l sA s s e t sT arget G r a t i f i c a t i o n

D a m a g eT o o l s A c c e s s R e s u l t s
Figure 2.3: The relationship among attackers’ motivations and goals

2.4.2 Attackers and their targets

As Sun-Tzu, the Chinese master of the art of war, would have it: “Hence
the saying: If you know the enemy and know yourself, you need not
fear the result of a hundred battles. If you know yourself but not the
enemy, for every victory gained you will also suffer a defeat. If you know
neither the enemy nor yourself, you will succumb in every battle” [31].
In computer security, knowing ourselves mean knowing our systems, but
even more knowing the assets we need to defend. Knowing the enemy
means being able to understand the attacks, but even more being able
to understand attackers, as well as their motivations and objectives.

In fact, since in most cases computer systems are attacked by people,
analyzing and understanding the motivations is of foremost importance,
and has inspired a number of works (notably, [32, 33]). As we already
noticed, information security is an interdisciplinary environment, with
a unique mix of computer science and social science problems to solve.

A first macro-distinction is between external and internal threats. We
have already hinted that many attacks come from inside an organiza-
tion (and indeed, nowadays it is difficult to even define what is “inside”
or “outside” the perimeter). An internal aggressor has immense advan-
tages, he usually knows the strengths and the weaknesses of the systems,
and also knows where the crown jewels of the organization are. Internal
aggressor can be consciously attacking the organization (often because
they are disgruntled or corrupted), or unconsciously helping an external
aggressor.

The technical skill level of the aggressor is another key differentiator:
it may vary widely, from the more expert and skilled professionals to
the script-kiddies, who use in a very dumb way automated scanners and
tools created by others.

The objective of the aggressor is also important: some aggressors have
a specific target (data, information, code,. . .); others may want to cause

18

2.4 A taxonomy of threats: attackers and attacksI m p l e m e n t a t i o nf l o w sC o f i g u r a t i o nf l o w sD e s i g n f l a w s
U n a u t h o r i z e da c c e s sU n a u t h o r i z e d u s eU n a u t h o r i z e dc o n t r o l P r o c e s s e s

D a t aA s s e t s
A c c e s s

Figure 2.4: Attack Methodologies: a graphical representation

damage, e.g. as a form of protest or to wreak havoc on a competitor;
others are just playing, stretching the security measures, exploring sys-
tems for fun. All of them have a varying grade of dangerousness, and
the type of damages they can cause varies widely.

Even the target may vary: sometimes confidential data and informa-
tion are the target, and the attacker tries to gain unauthorized access, or
to modify or delete them. Sometimes the resources, the systems them-
selves, are the target: bandwidth and disk space are sought by script
kiddies, MP3 traders, spammers, and so on. A flourishing black market
of these resources is present [34].

The tie between aggressors, objectives and targets is the motivation
for action, the reason for which someone attacks a system. This is the
fundamental component of this problem, but often it is not properly
taken into account. This concept is summarized in Figure 2.3.

2.4.3 Attacks: methods, tools and results

The heart of an attack is the subversion of the security policy of a sys-
tem. In other words, the attacker somehow obtains the capability of
performing an operation he should not be allowed to do. To do this,
he usually starts, controls, hijacks or aborts system processes in an un-
foreseen manner, thus gaining access, performing commands, or making
alterations to system data and resources beyond what the security pol-
icy would allow. This is usually accomplished by exploiting a security
vulnerability, as we described above. The mechanism may wildly vary,
but the core elements are shown in Figure 2.4.

Security vulnerabilities may exist in implementation of software: ex-
amples are input validation errors, such as SQL injections; buffer over-
flows [35]; wrong management of permissions; time of check to time of

19

2 Computer and Information Security: an Overview

L o c a l a t t a c k e rR e m o t e a t t a c k e r N o n � p r i v i l e g e dl o c a l a c c e s s
P r i v i l e g e dl o c a l a c c e s s

B r e a k i nA c c e s s
R e m o t e r o o t e x p l o i t

A d m i n i s t r a t o r A c c e s s P r i v i l e g e e s c a l a t i o n
Figure 2.5: Escalation paths for an aggressor and for a normal user

use attacks and other attack paths. Vulnerabilities are also caused by
misconfiguration of systems and programs [36]. Sometimes, vulnerabili-
ties are inherent in a system or protocol design (for instance the WEP,
Wired Equivalent Privacy protocol, is intrinsically flawed). We cannot
really go in depth analyzing security vulnerabilities, as this would be far
beyond the scope of this work. We refer the reader to [37, 38, 30, 5, 39]
for further details.

We must, however, distinguish remote and local attacks. These terms
do not denote the physical presence of the attacker in front of the ma-
chine, or the use of the system console. They make a distinction of priv-
ilege: a local abuser has some kind of access privileges to the system,
a remote attacker doesn’t. Usually, a remote attacker will penetrate
the system first (break in) and then perform other attacks to obtain
privilege escalation, usually to administrative powers (see the diagram
in Figure 2.5). This type of compromise is called in slang “root-ing” a
machine. Some attacks bring a remote user directly to root privileges
(remote root attacks), and they are obviously the most dangerous type
of vulnerabilities a system can show.

2.4.4 Conclusive remarks on attack taxonomies

An important missing factor in the CERT/CC taxonomy is the fact that
an attack is not usually linear. Aggressions are usually perpetrated with
a circular pattern: each successful exploit brings new power to the at-
tacker, that can be used to further penetrate other systems. Another
element which is not duly taken into account is the use of social engi-
neering techniques to directly obtain access.

The complete scheme of the process is thus similar to the one in Figure
2.6

20

2.5 Intrusion Detection and Tamper Evidence

Figure 2.6: The complete diagram of the intrusion process

2.5 Intrusion Detection and Tamper Evidence

A well known problem in the art of war is the fact that the defender
needs to plan for everything, while the attacker just needs to hit one
weak spot.

As Baker notes:

[the] philosophy of protection [. . .] depends upon systems
to: behave predictably (they should do what we think they
will do); be available when we need them; be safe (they
should not do what we don’t want them to do); be capable of
protecting our data from unwanted disclosure,modification,and
destruction; respond quickly. In other words, systems should
be trustworthy”.

Significantly, the title of the essay is “Fortresses built upon sand” [40].
As we have seen, almost none of these conditions are respected. This
means that we must realistically consider information systems as being
inherently insecure: software and hardware are not trustworthy, and
people are willingly or unwillingly violating security policies. Further-
more, policy specifications can be incorrect, or incomplete, or incorrectly
implemented.

As one of the Murphy’s laws would have it: “The only difference
between systems that can fail and systems that cannot possibly fail is
that, when the latter actually fail, they fail in a totally devastating
and unforeseen manner that is usually also impossible to repair”. The
lesson here is that every defensive system will, at some time, fail, so we
must plan for failure. As we plan for disaster recovery and continuity,
because disasters will happen at some point, we must design systems to
withstand attacks, and fail gracefully. We must design them in a way

21

2 Computer and Information Security: an Overview

which makes it possible to recover them from attacks without losing
data.

But even more importantly, any secure information system must be
designed for being tamper-evident, because when it will be broken into,
we want to be able to detect the intrusion attempt, in order to react to
it. Since information systems are not, usually, tamper evident, we call
Intrusion Detection Systems all the systems that can detect intrusion
attempts, and possibly assist in post-attack forensics and recovery.

Relatively few organizations maintain computer systems with effective
detection systems, and fewer still have organized response mechanisms
in place.

22

3 Learning Algorithms for Intrusion
Detection Systems: State of the
Art

3.1 What is an Intrusion Detection System ?

As we stated in the previous chapter, we need a complementary approach
to help us make computer systems tamper evident, i.e. to help us detect
intrusion events, alerting security personnel for reaction.

What we need is an Intrusion Detection System or IDS, which is
the computer system equivalent of a burglar alarm. The concept of a
system capable of detecting intrusions was introduced in 1980 by J.P.
Anderson [2].

The idea behind any type of IDS is that any information system is
designed to serve some goals, and the three properties of security are
aimed to ensure that the information system is not abused to do some-
thing else. Thus, when someone willingly violates the security paradigm
of an information system, his behavior and/or the behavior of the sys-
tem will somehow differ from the “normal” behavior. Ideally an IDS
would detect these behavioral anomalies and tag them as suspicious.

3.2 A taxonomy of Intrusion Detection System

approaches

3.2.1 Anomaly based vs. Misuse based

Intrusion Detection Systems can be broadly divided in two main cate-
gories, based on two different approaches: anomaly detection or misuse
detection.

Definition 3.1 An anomaly detection IDS tries to create a model of
normal behavior for the monitored system(s) or for their users, and flags
as suspicious any deviation from this “normal” behavior which exceeds

23

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

Misuse Based Anomaly Based
Require continuous updates Do not require updates
No initial training Long and complex training
Need tuning Tuning included in training
Cannot detect new attacks Can detect new attacks
Precise alerts Vague alerts
Almost no false positives Huge numbers of false positives
Lots of non contextual alerts No non contextual alerts
Easier to design More difficult to design

Table 3.1: Comparison between strengths and weaknesses of anomaly
based and misuse based IDSs

carefully tuned thresholds. This is surprisingly similar to the earliest
conceptions of what an IDS should do [2].

Definition 3.2 A misuse detection IDS uses a knowledge base (often
called a set of signatures) in order to recognize directly the intrusion
attempts, which means that instead of trying to describe the normal be-
havior of a system it tries to describe the anomalous behaviors.

These systems have symmetric strengths and weaknesses that can be
summed up as in Table 3.1. The great strength of anomaly detection
systems is that they do not require a continuously updated knowledge
base to be created “a priori”, since they model the normal behavior of
the system they act upon. This makes them capable of detecting new
and modified attacks, a very desirable property.

However, in order to build a model of “normal behavior” we need to
define both what variables we are going to monitor, and what kind of
model we are going to use to model them: this translates into anomaly
detection systems being much more difficult to design and test than
misuse detection systems.

Another negative point is that most anomaly detection systems need a
rather long training phase, during which the IDS is not effective and can,
in some cases, be sensitive to the insertion of attacks into training data,
since they would be built “into” the system profile as normal behaviors.
As a final note, these system are known to be prone to errors and false
positives.

Misuse based systems, on the other hand, require an extensive study
of the attacks in order to build and keep up to date a base of signatures.
The efficiency of these systems is directly dependent on the quality of
the knowledge base (a parallel can be drawn here with the world of

24

3.2 A taxonomy of Intrusion Detection System approaches

antivirus software). These systems are less prone to false positives, but
if misconfigured they can generate a huge number of unwanted, non
contextual alerts that can make them useless. A key advantage is that
misuse detectors are precise: when an alert is triggered, we know what
attack signature was activated and we can look for that specific attack
and even activate an automatic response (a model known as “Intrusion
Prevention System” or IPS). An anomaly based system would instead
just flag a connection or event as anomalous, without specifically saying
what is out of ordinary.

However, these features of misuse based systems are paid dearly and in
advance: maintaining a wide, up to date knowledge base of the attacks
is an impossible task, for at least two reasons:

1. As we saw when speaking of disclosure, not all the new attacks
are immediately released to the experts for analysis; many vul-
nerabilities are undisclosed, and attacks for these vulnerabilities
(the so-called “zero days”) cannot be catched by misuse detectors,
except in the lucky case that these attacks closely resemble earlier
attacks against different software, or that a part of these attacks,
alone, is recognizable.

2. Some forms of attack (in particular attacks against web applica-
tions) can be studied by a skilled attacker right on the spot, just
to hit a single or a few systems: in this case, no suitable signa-
tures can possibly exist, except once again if the attacks closely
resemble other classes of attack and can be detected by the same
signatures.

Additionally, most computer attacks are inherently polymorphic. If
multiple sequences of actions can lead to a compromise, it is correspond-
ingly more difficult to develop appropriate signatures: either we develop
more and more signatures for each possible variation of the attack, or
we try to generalize the signatures. In the first case, we may have a
complexity problem, while in the second case we expose ourselves to the
risk of triggering false positives.

Let us analyze three classical examples of this problem:

Example 3.1 All the “Unicode” related bugs are inherently polymor-
phic since in the Unicode character set there are multiple possible codes
for each character. This means that either we build an exponential num-
ber of signatures, or we must apply a decoder/canonicalizer before match-
ing against the signatures of the attack. Either way, we evidently incur
in performance problems.

25

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

Example 3.2 The ADMmutate tool [41] enables an aggressor to en-
crypt the shellcode of a stack-smashing buffer overflow attack [35]. In-
stead of using the binary sequence of commands that he wants to run
on a target machine (let it be sequence ”A”), the aggressor encrypts
this code (let it be C(A)), and puts a decryption wrapper around it (the
function C−1), thus fooling any IDS which blindly looks for string A,
which is completely different than the resulting C−1(C(A)); however,
when executed, the latter generates (and executes) A. Even if most IDSs
nowadays have a specific signature for the function C−1 it’s easy to un-
derstand that this principle can be indefinitely applied, in many forms.

Example 3.3 Another example based on buffer overflow attacks is the
so-called “NOP signature”. Most attacks of this kind use “no operation”
instructions (on Intel x86 assembler, “NOP”, hexadecimal code 0x90) as
“padding”, because it’s sometimes difficult to understand where, exactly,
code execution will begin. In this way, wherever the code happens to
begin execution, the processor finds a series of NOP instructions (“NOP
sled”) and arrives safely at the beginning of the real attack code. Most
IDSs thus detect a long sequence of NOP as a possible shellcode. Sneaky
attackers thus use a jump to the following address (JMP 0, 0xEB0x00)
instead of a NOP. If such a signature is also added to the IDS knowledge
base, they could jump ahead of an arbitrary number of positions instead,
and always find a way to fool the IDS.

Drawing an analogy, if security is an eternal chess game, most chess
players can tell you that a “mirror game” in which black continuously
mirror white’s move is invariably won by white. And aggressors, with
this approach, always have the first move.

In fact, misuse based IDSs are known to be particularly effective
against the so-called “script kiddies”, unskilled attacker that rely on
commonly known attack tools, for which a signature is usually wide
available.

Most commercial systems are substantially misuse based. Anomaly
based systems have been mostly developed in academic environments.
Some systems try to integrate the approaches, but there’s a difficult
problem of metrics to compare signature based alerts and anomaly alerts.

3.2.2 Network based vs. Host based

Another distinction can be drawn on the base of the source of data being
audited by the intrusion detection system, between network based and
host based systems.

26

3.2 A taxonomy of Intrusion Detection System approaches

Definition 3.3 A host based IDS controls a single machine, sometimes
even a single application, and depends on data which can be traced by
the operating system of the monitored host, e.g. system calls, resources
usage, privilege escalations, and/or system logs.

Definition 3.4 A network based IDS is connected to a network segment
and tries to analyze all the traffic which flows through the segment (usu-
ally, by the means of a network sniffer), trying to detect packets which
could be part of an attack.

Both methods have their own advantages and disadvantages. Network
based IDSs can control networks of arbitrary size with a small number
of (almost) invisible sensors (using unnumbered sniffing network inter-
faces in promiscuous mode), but they obviously can detect only attacks
which come through the network (which, of course, is nowadays the
main vector of aggression). In addition, some network communications
are encrypted, effectively blinding the IDS. If an IDS has signatures for
an attack against a web application, but this attack happens in an SSL
communication, no alert will ever be triggered.

Network based IDSs also suffer from the need to reconstruct the ef-
fect of the packet flow on every single host from a central point, taking
also into account the variability of the implementations of the TCP/IP
standards among different operating systems. While this would be the-
oretically possible for an arbitrarily powerful system, in real case im-
plementations there are performance constraints, so an IDS must use
simplified approaches that lead to attacks such as insertion and eva-
sion, in which the IDS is unable to correctly reconstruct the packet flow
observed by a system [4]. Similar difficulties arise from the fragmenta-
tion of TCP/IP packets, which different stack implementations handle
differently.

Host based systems were the first ones to be developed and deployed,
primarily drawing information from system logs, as in [2]. However,
they presented a number of drawbacks: the peer-to-peer structure of
nowadays information systems is much less suited to host based detectors
than the server-and-terminals structure of the 80’s. The widespread
use of the network computing paradigm and the explosive growth of
the Internet made the network one of the most sensitive attack points
(even for internal attacks). The additional perceived and illusionary
simplicity of a “connect and forget” system also helped. So, if the first
really impressive example of a network based IDS, Network Security
Monitor [42], was developed much later than the first examples of host
based IDS, nowadays such systems are fundamentally network based.

27

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

It is important to note, however, that since failures and strengths
of such approaches are symmetric, some systems try to integrate them
[43], but there are difficult and intriguing problems of metrics, fusion
and normalization when working on data coming from different sources,
somehow tied to the “multi-sensor data fusion” problems already under
consideration in the field of robotics [44]. We will not try to address
such problems in this thesis, however, because this would be enough for
an entirely new work of this same size.

3.2.3 Centralized vs. Distributed Architectures

Even if, for simplicity, we talk of IDS systems as monolithic entities, they
are often composed of distributed components, sometimes of different
types. As we stated before, network and host based probes are comple-
mentary, and also anomaly and misuse based systems can be combined.
For such a distributed monitoring network, an appropriate collaboration
infrastructure is needed in order to help correlation engines cross system
boundaries.

Beyond the already mentioned problem in data normalization and fu-
sion, appropriate decisions must be taken and alerts must be generated.
In [45] various inference engines for coordination are proposed, based
on Bayesian rules and on graph analysis. Management and correlation
can happen in a centralized engine, often with a hierarchical structure
where “lower layer” components detect atomic events and “higher layer”
components correlate and build scenarios on them [46]. Otherwise, the
system reasoning can be distributed among the various probes in a multi-
agent fashion. Examples of distributed, agent based infrastructure are
HIDE, Hierarchical Intrusion DEtection [47], AAAFID, Autonomous
Agents for Intrusion Detection [48, 49] or EMERALD [43]. These ar-
chitectures allow for great flexibility and extensibility, as well as greater
survivability in the face of overload or attack.

3.3 Main Issues in Intrusion Detection

3.3.1 Comprehensiveness of model

As we stated above, the types of attacks are continuously evolving. If the
micro-evolution poses just updating problems, macro-evolution steps,
such as the discovery of new types of attack, may make the IDS base
model outdated.

IDS models must be as comprehensive as possible. For instance, a
sensor operating at layer 3 of the ISO/OSI stack will never detect attacks

28

3.3 Main Issues in Intrusion Detection

at layer 2, no matter the knowledge base updates. The engine itself must
be rewritten or patched to go below the original layers.

Anomaly detection and misuse detection systems suffer of this prob-
lem in a similar manner. If an attack shows up only in the variables that
an anomaly detection system does not measure, then the IDS is blind
to it. It is easy to imagine forms of attack specifically studied to find
and exploit these “dead spots”. An interesting example is in [50].

3.3.2 Zero-day attack recognition

As we already stated in Section 3.2.1, by their own nature, misuse based
systems are unable to deal with unknown attacks: thus, the growing
number of vulnerabilities discovered every day requires a continuous
update of their knowledge base. In addition, there is also an unknown
number of discovered but undisclosed vulnerabilities (the so called “zero-
days” [3]) that are not available for analysis and inclusion in the knowl-
edge base. If we add attacks that are specifically studied to compro-
mise a custom application, or a specific system, we can see that misuse
detectors have a severely limited coverage of attacks. In fact, misuse-
based IDSs are mostly effective against unskilled attackers that rely on
commonly known attack tools, for which a signature is usually widely
available. This evidently excludes the most dangerous attackers.

Since Intrusion Detection Systems are intended to be a complemen-
tary security measure, which can detect the failures of other measures,
the inability to detect unknown attacks (or new ways to exploit an old
vulnerability) is an unacceptable limitation. For this reason, some ven-
dors in their literature have re-defined a zero day not as an undisclosed
vulnerability, but as a new exploit for an already known vulnerability.
In this sense, since well-written signatures can catch new exploits for
some vulnerabilities, misuse detectors can claim some sort of zero day
recognition, but this should be recognized as just a marketing hype.

In truth, zero-days are by definition beyond the grasp of misuse based
systems, and one of the key reasons

3.3.3 Intrinsic security and survivability

An IDS should be designed to be as secure as possible, and also designed
for survivability, since it has a similar function as an aircraft emergency
flight recorder. Since the IDS logs can quickly become the only valuable
source of information on a security breach, it is important that the IDS
system itself is not compromised.

Subversion of an IDS can disable the intrusion alerts, generating a

29

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

false sense of security, and can lead to irreversible alterations in logs and
traces. A distributed IDS is also vulnerable to common attacks against
communication between components, and must adopt all the techniques
to ensure end-to-end communication security and confidentiality.

3.3.4 Flexibility and Usability Issues

Security personnel can be trained to use an IDS system, but really knowl-
edgeable people are a scarce resource worldwide. As a result, IDS alerts
must be as clear as possible (this is typically an issue for anomaly detec-
tion systems), and management consoles must be designed for usability.

Additionally, flexibility is required to adapt the systems (particularly
commercial, off-the-shelf IDS softwares) to different usage scenarios.

3.3.5 Scalability and Throughput

An IDS system must scale to handle the ever-increasing throughput of
today’s networks and computer systems. For instance, network based
systems must be specifically redesigned for high performance, e.g. the
BRO project [51]. In the case of in-line systems such as intrusion preven-
tion devices, response time (which is not the same as the throughput)
is also of foremost importance.

Network IDSs, when overloaded, typically enter a random discard
phase, loosing part of the incoming packets. This problem can be mod-
eled with well known techniques of performance theory, such as blocking
queueing networks [52], and we even performed some researches in that
direction [53]. However, the evaluation of intrusion detection systems
is a difficult and open research topic [54], an in-depth analysis of which
would be outside the scope of this work.

If the dropped packets are part of an attack, the attack is probably
lost. If this coincidence seems difficult to happen, let us consider the
problem from an attacker perspective: overloading an IDS and making
it loose packets is an easy way to avoid detection. Generation of a huge
volume of false alerts is another useful technique to overload an IDS and
make the logs completely unreadable as well.

3.3.6 Ambiguity in event reconstruction

Reconstructing a scenario from a disperse set of events (e.g. reconstruct-
ing network traffic sessions, or correlating log events across a large net-
work) is one of the most difficult tasks for an IDS. Propagation time, the
best effort nature of TCP/IP networks, time skews on timestamps, all

30

3.3 Main Issues in Intrusion Detection

contribute to create difficulties on time-based reconstruction and cor-
relation algorithms. Moreover, different scenarios usually tend to be
interleaved, mixing together alertsm and creating confusion.

Writing signatures for scenarios (or aggregating them through various
techniques) is also not easy, due to the problems of unification (the pos-
sibility of an arbitrary number of different alternatives to be present at
a step) and of partial ordering. Artificial Intelligence researchers would
define the situation to be in the class of uncertain reasoning problems,
which are known to be easier to solve in an off-line fashion rather than
in an on-line environment.

These difficulties often lead to serious attack windows, since it is
enough for an attacker to disperse the steps of his aggression over a
long time in order to avoid detection through correlation.

Network based traffic reconstruction also presents some uniquely dif-
ficult problems to solve. Theoretically, an arbitrarily powerful system
should be able to reconstruct all the sessions, by observing all the net-
work traffic through sniffing probes. However, in real systems this cannot
happen. In fact, it is very difficult to understand, from a single point of
view, exactly how packets will be reconstructed on the endpoints. This
was beautifully demonstrated in [4], leading to evasion techniques that
still work nowadays on many network based IDSs. Particularities in the
TCP/IP network stack implementations, as well as the topology of the
network, can be used by a skilled attacker in order to insert fake packets
that will never reach the target host (insertion attacks), thus creating
sequences that the IDS will reconstruct in a different way than the tar-
get. For instance, a packet could have a TTL set in such a way that it
will be seen by the IDS, but discarded before reaching the target host.

On the other hand, using evasion techniques (such as fragmentation)
the attacker can try to create sequences that once reconstructed will
create an attack, but on the network will look legitimate. Fragmentation
has proved to be particularly effective: most IP stacks handle exceptions
in a different way, making it very difficult to figure out how exactly the
reconstructed packets will look. Fragroute [55] uses this concept to hide
attacks in fragmented packets, also using the techniques from [4].

Combining evasion techniques creates very effective attacks, even if
an IDS is resistant to the single components, as shown in [56].

A perverse relationship makes it so that the more an IDS engine is
resistant to evasion attacks, the more it is likely to fall prey to insertion.
Usually, misuse based systems, being based on non-flexible signatures,
are more prone than anomaly detection systems to fail against these
techniques.

31

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

3.3.7 Target based correlation

Knowledge on the network topology, on the services offered by different
systems and on the operating system and software versions can be used
in order to prioritize or filter the alerts, for instance discarding “out of
context” alerts such as attacks against wrong operating platforms (i.e.
a Linux exploit against a Windows machine). This type of knowledge
can evidently be exploited only in misuse based systems, as they are
the only one generating alerts with enough knowledge attached to be
managed in this way.

This technique is debated because there is a trade-off between having
to deal with less security alerts, and the possibility of recognizing attack
actions even if the attacker is making mistakes. In addition, the need
to maintain an accurate map of the protected network - including valid
points of vulnerability - creates a further updating problem in misuse
based systems.

3.3.8 Reactivity and Intrusion Prevention

Reactivity, or the ability to stop attacks as well as flag them, is probably
the Holy Grail of Intrusion Detection. Dubbed “Intrusion Prevention
Systems”, reactive IDSs have been marketed as a security panacea, but
they are really more of an unexplored territory with many questions left
open.

A first problem is a performance issue: on-line systems just need to
have a throughput high enough to avoid dropping packets; if a system
is placed “in-line”, acting as a gateway very much in the same way a
firewall would, its response time becomes important, as it is the delay it
is introducing onto the network. In a very similar manner, a host based
IPS could easily overload a very crowded system, but this is easier to
deal with.

A second problem is the possibility of denial-of-service. If a reactive
network IDS blocks services based on detected attacks, a spoofed attack
packet could be enough to block legitimate connections. False positives
make this problem even more troublesome.

A third problem is architectural: in order to block attacks, a network
based IPS should be placed on an enforcement point, usually in cascade
or on board of a firewall. This makes it ineffective against internal
attacks, which were one of the reasons that led to the very development
of IDS systems. Some network based systems try to deal with this
problem using RST packets to kill connections even if not placed directly
in the middle of the network path, but this is offen inefficient. For this

32

3.4 Learning Algorithms: supervised and unsupervised

reason, host based IPS are a much more effective choice, in our opinion.

Aggressive reactions, or counter attacks, have been proposed also, but
the possibility is shunned by security experts: if we just think about the
false positive problems, we can easily see why, without even beginning
to take into account legal liabilities tied to a “vigilante” behavior.

3.4 Learning Algorithms: supervised and
unsupervised

In the following, we will make use of terminology drawn from machine
learning literature. Machine learning is an area of artificial intelligence
concerned with the development of techniques which allow computers to
“learn”, or, more specifically, concerned with the creation of algorithms
whose performance can grow over time. Machine learning is heavily re-
lated with statistics, since both fields study the analysis of data, but
unlike statistics, machine learning is concerned with the creation of al-
gorithms of tractable computational complexity. While we refer the
reader to [57, 58] for an in depth analysis of the topic, we introduce in
this paragraph some of the key terminology of this area.

The first distinction is between supervised and unsupervised learning
algorithms. Supervised learning algorithms generate their model (i.e.
they learn) from a labeled dataset, i.e. a dataset where inputs are labeled
with the desired outputs. An example is is the classification problem:
the algorithm is required to learn a function which maps a set of input
vectors into one of several classes by looking at several pre-classified
examples.

Unsupervised algorithms instead try to model a set of inputs according
to inner criteria (usually statistical density-based criteria of some sort).
The unsupervised problem which is symmetrical to the classification
problem is called “clustering” (see Section 4.3.1) and means creating
“natural” groupings of similar elements, without example classifications
to work on.

From a theoretical point of view, supervised and unsupervised algo-
rithms differ in the causal structure of the model. In supervised learning,
the model defines the effect of a set of observations (the inputs), on the
set of the labels (outputs). The models can include hidden, mediating
variables between the inputs and outputs. In unsupervised learning, on
the contrary the observations are assumed to be the outputs, and to be
caused by latent variables.

With unsupervised learning algorithms it is possible to learn larger
and more complex models than with supervised learning, because in

33

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

supervised learning the difficulty of the learning task increases expo-
nentially in the number of steps between the set of inputs and outputs.
In unsupervised learning, the learning time increases (approximately)
linearly in the number of levels in the model hierarchy.

In our application domain, the use of supervised learning has two
main drawbacks. The first is that, requiring examples of both normal
behavior and attacks, these systems are only partially anomaly based,
and often work more like a generalized misuse detector. But the main
drawback is that a huge labeled dataset is needed for training. This can
be either artificially generated (and therefore not really representative),
or a manually labeled dataset of real world events (which is evidently
difficult to obtain, in particular in a network based environment).

3.5 Anomaly Detection Systems: State of the Art

3.5.1 State of the art in misuse detection

Misuse detection techniques have evolved little over the years. The sim-
plest form of misuse detection, expression matching, searches an event
stream (usually log entries in host based schemes, or network traffic),
for occurrences of specific attack patterns.

Snort [59], a lightweight network intrusion detection system which
is arguably the most famous open source product in this area, uses a
rather advanced form of these early techniques in order to flag attacks.
Advancements in this area include various techniques to improve the
performance of rule matching engines such as the ones presented in [60]
(where clustering of signatures is used to accelerate the matching pro-
cess). Similar features are offered by other systems such as NFR [61] or
BRO [51]

These rules however do not represent contexts. This results in poor ex-
pressivity, at times. In works such as [62] pattern-matching signatures
are complemented by higher-level knowledge on network and connec-
tion status. Other approaches are more general. For instance, state-
transition analysis has been proven an effective technique for represent-
ing attack scenarios [63]. In this type of matching engines, observed
events are represented as transitions in finite state machine instances
representing signatures of scenarios. When a machine reaches the final
(acceptance) state, an attack has been detected.

This approach allows for the modeling of complex intrusion scenarios,
and is capable of detecting slow or distributed attacks, but somehow
complicates signature generation. Other state machine representations
(e.g. colored Petri nets) offer similar advantages.

34

3.5 Anomaly Detection Systems: State of the Art

There are also quite interesting approaches which try to create “gener-
alized” signature matches. For instance, the GASSATA system (Genetic
Algorithm as an Alternative Tool for Security Audit Trail Analysis) [64]
uses a genetic algorithm to search for combinations of known attacks.
One of the evident drawbacks of systems such as these is that, like
anomaly detectors, they cannot offer an explanation for any positive
match they encounter.

3.5.2 Host based anomaly detection

Anomaly detection has been present in the intrusion detection concept
since the very inception, in the seminal works by Anderson [2] and then
Denning [65]. At that time, obviously, host based techniques were the
focus.

Various types of approaches have been widely researched in literature,
and they can be divided as follows, without pretending to be taxonom-
ically sound.

Statistical models

In [65] a number of statistical characterization techniques for events,
variables and counters were first outlined. IDES used parameters such
as the CPU load and the usage of certain commands in order to flag
anomalous behaviors. NIDES in its statistical component [66] further
developed this scheme. Examples of these early statistical models are:

• Threshold measures, or “operational model” [65], in which stan-
dard or heuristically-determined limits are used to flag anomalous
rates of event occurrences over an interval (e.g. on the number of
failed login attempts);

• Computation of mean and standard deviation of descriptive vari-
ables, in order to compute a confidence interval for “abnormality”;

• Computation of co-variance and correlation among the different
components of multivariate measurements on a computer system.

Another interesting approach is the use of an incidence matrix com-
mand/user, which is searched for structural zeroes representing rare
commands [67]. More complex theoretical works (e.g. [68, 69]) have
also followed this purely statistical approach, sometimes with very in-
teresting results. Most of these works, however, do not take into account
the sequence of events, but just atomic events, or their quantity over a
sliding time window.

35

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

Immune Systems

In the immune system approach, computer systems are modeled after
biological immune systems. In reality, artificial immune system have
been proposed as a computational approach for solving a wide range of
problems [70]. These approaches have been widely presented in intrusion
detection literature (with earliest ideas ranging back as far as 1997 [71]),
but they never became mainstream, and are so heterogeneous they would
deserve a taxonomy and literature review effort of their own. We limit
ourselves to refer the reader to [72, 73, 74].

File Alteration Monitoring

Sometimes known as “Tripwire”, from the name of its most widely de-
ployed and best known representative, this intrusion detection technique
uses cryptographic checksums (hashes) of sensitive system data in or-
der to detect changes to critical system files - including unauthorized
software installations, backdoors implanted by intruders, configuration
file changes, and so on. Such information can be of invaluable help in
detecting attacks, in recovering a compromised system, as well as in
forensic post-mortem examination.

Of course, the core problem of this methodology is that if the checksum
database is conserved locally, it can be altered. Moreover, the host
based program which routinely checks for tampering can be damaged or
subverted, thus making this type of systems inherently unreliable.

Whitelisting

Whitelisting is a very simple, yet effective, technique for reducing an
event stream (e.g. a system log, a connection trace, etc.) to a humanly-
manageable size. It involves passing the stream through a cascade of
whitelisting filters corresponding to known benign patterns of events.
What remains after known events have been filtered out are either novel
or suspicious events. If classified as normal, they enter the whitelist for
future filtering, otherwise they undergo detailed analysis. This is there-
fore a very basic form of supervised learning. Described with the name
“artificial ignorance” in a seminal work by M. Ranum [75], this tech-
nique is more a post-processing technique for intrusion detection alerts
than a standalone technique for detection. In addition, it has several
limits, first of all the difficulty in recognizing the fact that whereas a
single event of some type (let’s say, a failed user login) is meaningless, a
long sequence of the same event may instead be highly suspicious.

36

3.5 Anomaly Detection Systems: State of the Art

Burglar alarms and honeypots

An alternative approach is to focus on identifying events that should
never occur. This type of techniques, named “burglar alarms” by Ranum,
are concerned with creating monitors that look for instances of policy
violation, effectively placing “traps” which attackers are prone to trip.
For instance, we could monitor any outbound connection from an HTTP
server, if it is not expected for this machine to make any such connec-
tion. This type of detection is independent of attack description and
therefore qualifies as anomaly detection. However, it requires care and
extensive knowledge of the network administrator to properly lay down
such traps.

This approach brings into consideration the use of honeypots [76] as
intrusion detectors. An honeypot is a resource whose value lies in being
compromised by an attacker. Since an honeypot does not have any le-
gitimate use, access to such a resource is usually a very good indicator
that something strange is happening. In fact, this approach is so promis-
ing that some authors have proposed a way to extract information from
honeypots and use it to build misuse detection system signatures [77].

It is important to note that these approaches can be as effective
against outsiders as against insider attacks and privilege abuse [78].

Supervised Learning

Supervised learning algorithms have also been applied for host based
intrusion detection purposes. For instance, Neural Network algorithms
have been used to analyze interactive user sessions (such as NNID, Neu-
ral Network Intrusion Detection [79], but see also [80, 81, 82]). Neural
networks avoid an arbitrary selection of thresholds, but are neverthe-
less sensitive to proper selection and preconditioning of input values. A
common critique that can be drawn against many published works in
this particular area is the arbitrariness of selection of observed variables.

The learning ability of these systems allows to compensate for behav-
ior drift through constant retraining. This is however a difficult choice,
since then an attacker could slowly use the semantic drift to retrain the
network to accept his behavior.

An alternative, supervised approach is based on data mining, as seen
in [83, 84]. These approaches have the advantage of giving insights on
how the features can be selected, how they interact with each other, and
on the appropriate models to fit them. On the other hand, the output
is less usable on a real-world system than in most other cases. Other
researchers proposed using Instance Based Learning (IBL) techniques

37

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

[85], which have both supervised and unsupervised applications.

Unsupervised Learning

Various unsupervised learning techniques have been used for host based
intrusion detection. Some of the more advanced applications of statistics
can already be defined as “learning algorithms”. For instance, some
uses of Markovian process models can be ranked as such. Among them,
clustering techniques to group similar activities or user patterns and
detect anomalous behavior [72];

Even genetic algorithms have been proposed for this task [86].

Host based anomaly detection using system calls

In this paragraph (which is not strictly taxonomical, since it overlaps
the previous ones), we introduce the main contributions on the analysis
of the sequence of system calls invoked by programs, which will be the
focus of most of the research outlined in Chapter 5.

The very first approaches dealt with the analysis of the sequence of
syscalls of system processes. The first mention of the idea is in [87],
where “normal sequences” of system calls (similar to n-grams) are con-
sidered (without paying any attention to the parameters of each invoca-
tion). A similar idea was presented earlier in [88]: however, the authors
of the latter paper suppose that it is possible to describe manually the
normal sequence of calls of each and every program. This is evidently
beyond human capacity in practice. However, an interesting element of
this paper is that it takes into account the values of the arguments of
syscalls.

Variants of [87] have been proposed in [89, 90, 91, 92]. This type of
techniques have also been proposed as reactive, IPS-like components [93].

An inductive rule generator called RIPPER [94, 95], invented for text
classification, has been used for analyzing sequences of syscalls and ex-
tracting rules [96]. This type of approach can also been used for au-
tomatically defining protection policies, i.e. for intrusion prevention
purposes [97, 98].

Finite State automata have been used to express the language of the
system calls of a program, using deterministic or nondeterministic au-
toms [99, 100], or other representations, such as a call graph [101]. Hid-
den Markov Models have also been used to model sequences of system
calls [102], with better detection results but with computational prob-
lems [103].

38

3.5 Anomaly Detection Systems: State of the Art

In [104] a detailed review of different approaches is presented, along
with a comparative evaluation on live datasets that are unfortunately
not available anymore for testing. An Elman Network, a recurring neural
network with memory properties, has also been used [105].

None of these methods analyzes either the arguments or the return
values of the system calls. This is due to the inherent complexity of the
task, but the arguments contain a wide range of information that can be
useful for intrusion detection. For instance, mimicry attacks [106] can
fool the detection of syscall sequence anomalies, but it is much harder
to devise ways to cheat both the analysis of sequence and arguments.

Two recent research works began to focus on this problem. In [107] a
number of models are introduced to deal with the most common ar-
guments. We discuss in depth and extend this work in Chapter 5.
In [108] an alternative framework is proposed, using the LERAD al-
gorithm (Learning Rules for Anomaly Detection) which mines rules ex-
pressing “normal” combinations of arguments. Strangely, neither work
uses the concept of sequence analysis. A concept named “Resilience”
has also recently been introduced [109], involving the mapping of argu-
ments of system calls as multidimensional data points. However, this
approach is still in the early stages of development.

3.5.3 Network based anomaly detection

Anomaly detection algorithms have been applied also to network intru-
sion detection, mostly using statistical techniques. Again, we roughly
divide the approaches in literature, without a pretense to be complete
or taxonomically sound.

Protocol Anomaly Detection

Many attacks rely on the use of unusual or malformed protocol fields,
which are incorrectly handled by target systems. Protocol anomaly de-
tection techniques (also known as “protocol verification”) check protocol
fields and behavior against standards or specifications. This approach,
used in commercial systems and also presented in literature [110], can
detect some commonly used attacks, as well as lots of faults in standard
compliance. They are therefore prone to generate false positives. On
the other hand, many attacks do not violate the specifications of the
protocols they exploit, and are therefore undetected by this approach.

It is also worth to note that evaluations on protocol anomaly detection
performed over the DARPA dataset benefit from the artificial anomalies
we describe in Section 4.6 and are therefore unreliable.

39

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

Supervised Learning

Supervised learning algorithms have also been used. In [111, 96, 84] the
authors fully explore this approach using data mining techniques along
with domain knowledge, with interesting results. ADAM [112, 113] is a
rule-based, supervised system that mines association rules for detecting
anomalies in TCP connection traces.

More sophisticated examples of supervised, statistical analysis and
classification of network traffic anomalies have been also proposed in
[114].

As noted before, the problem here is the need of a huge dataset of
labeled traffic, something which is really difficult to obtain.

Simple statistical methods

Simple statistical methods have been used also in the analysis of net-
work anomalies. This was already present, for instance, in NIDES [115].
Usually, these systems work on network-wide feature variables dealing
with global traffic volume [116]. This is also true in most of the few
network based anomaly detection systems commercially available today.

Statistical methods have also been applied to packet information, and
in particular to the information in the packet headers, discarding packet
content. For instance, PHAD, Packet Header Anomaly Detection [117,
118], is a simple statistical modeling method which has been applied
to data extracted from packet headers. More complex, information-
theoretic methods such as the Parzen Window method have also been
proposed [119], but they suffer from a need to be able to characterize
statistically the observed variables, and from low throughput.

Unsupervised learning and outlier detection

Unsupervised learning techniques are more difficult to apply to network
data, for dimensionality reasons that we will discuss in detail in Chapter
4. Also in this case, the information of packet headers, or summary
information on connections, have been used, discarding packet content.

Clustering Algorithms can be used for detecting anomalies in a se-
quence of packets by applying them to a rolling window of features:
some authors proposed the use of a SOM to detect attacks in the DARPA
dataset, by applying it to connection data, with 6 characteristics for each
connection [120]; others even used a SOM to analyze network traffic,
discarding the payload and putting the header information in a rolling
window. The prototype, called NSOM, can detect denial of service at-
tacks [121]. Other authors propose instead to explicitly use time as a

40

3.5 Anomaly Detection Systems: State of the Art

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

IP header "Total length" Field

N
u

m
b

e
r

o
f

P
a
c
k
e
ts

Figure 3.1: Distribution of the values of field Total Length in a portion
of the IDEVAL dataset

feature, and to show the packets to a SOM one at a time [122]: this ap-
proach is theoretically flawed, since adding a linearly increasing feature
to the data cannot possibly contribute positively in an algorithm which
focuses on dimensionality reduction through bidimensional mapping.

A further attempt to use Self Organizing Maps is INBOUNDS (In-
tegrated Network Based Ohio University Network Detective Service)
[123, 124]. Packets are organized by connection, a subset of categorical
features is extracted, and normalized on a Gaussian hypothesis. Then
further packets are flagged as anomalous if they are too “far” from the
best matching unit (see Section 4.3.2). Unluckily, this work has several
theoretic weaknesses. Normalizing categorical data makes the features
meaningless at best, and in our test even non-categorical data such as
packet length have a non-Gaussian distribution (see Figure 3.1). Aver-
age length is 138.348721, standard deviation 342.267625, but evidently
the distribution is not Gaussian.

MINDS (Minnesota INtrusion Detection System) [125] uses a density-
based anomaly detection algorithm (called a Local Outlier Factor, or
LOF) to identify outliers in ten-minutes long time windows over network
connection traces. The algorithm however is batch and cannot run in
real-time.

Discounting learning algorithms have been used in real time onto

41

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

packet header information in the SmartSifter prototype [126], and we
will analyze this approach in depth in Section 4.4.3.

A paper which takes into account the payload of the packets, which
appeared a year later than our earliest results, shows some interesting
statistical properties of packet payload characterization [127]. Also in
[128] a monitor stack of Self Organizing Maps is proposed, and in some
of the layers payload bytes are considered. However, this experiment is
not really meaningful in our context, having been performed over some
tens of packets at most, and with a set of features which is appropriately
chosen to trigger the alerts on the attacks used for evaluation. In [129]
a rule-based algorithm is presented, which takes into account payloads
but ignores totally the meaning of the header fields.

We will analyze some of these approaches (the most interesting ones
in our opinion) in further detail in Section 4.4.1.

3.6 Evaluation of Intrusion Detection Systems

Evaluation of an intrusion detection system is a difficult and open re-
search topic [54]. We have briefly seen, in Section 3.3, that many differ-
ent issues plague intrusion detection systems. It is very difficult to plan
tests for many of these issues, and even more difficult to combine these
tests in a meaningful, overall evaluation.

The simplest evaluation of intrusion detection systems deals with the
following quantities:

TP True Positives, alerts raised for real intrusion attempts;

FP False Positives, alerts raised on non-intrusive behaviors;

TN True Negatives, no alerts raised and no intrusion attempts present;

FN False Negatives, no alerts raised when real intrusion attempts present.

False positives are the bane of intrusion detection systems, because
after a while an error-prone system is just ignored and not used any-
more. Anomaly detection systems are particularly prone to false posi-
tives, while signature based systems usually do not have a lot of false
positives. They rather have non-contextual alerts, which means true pos-
itives on attacks that are nevertheless useless, since they are targeting a
non vulnerable platform. The so called target-based architectures [130]
try to reduce this problem.

False negatives are obviously also a problem. In particular, for misuse
based systems, most new attacks will generate false negatives, unless
they are very similar to an existing attack.

42

3.6 Evaluation of Intrusion Detection Systems

Figure 3.2: Examples of ROC curves

We can then define two important metrics: the Detection Rate, mea-
suring how many attacks are detected overall:

DR =
TP

TP + FN

and the False Positive Rate, measuring how many alerts are false:

FR =
FP

TN + FP

It is easy to see that the DR is equivalent to the “recall” rate in
information retrieval systems, while the FP rate is somehow the inverse
of the concept of “precision”.

Intuitively, these two variables are bound by a trade off: the more sen-
sitive a system is, the more false positives it generates, but the higher
the detection rate is. If sensitivity is a variable, s, then FR = FR(s) and
DR = DR(s). Therefore we can represent the two quantities as a para-
metric curve, which is named ROC, Receiver Operating Characteristic,
in radar and signal analysis literature.

In Figure 3.2 we have traced some imaginary ROC curves. Axes are
obviously scaled from 0 to 1. An IDS which does not generate any alert
has DR = 0 and FR = 0 since TP = FP = 0, while an IDS which flags
anything has DR = 1 and FR = 1 (since FN = TN = 0). Among these
extremes, any behavior can happen.

In general ROC curves are monotonous non decreasing and above the
bisectrix. Intuitively, the larger the area below the curve, the better the
detection to false alert ratio is. But this definition is scarcely operative
(needing a point-by-point analysis to trace and interpolate the curve).
Additionally, this global dominance criterion is not always valid: the
costs we associate to a false positive or a false negative is generally

43

3 Learning Algorithms for Intrusion Detection Systems: State of the Art

different, and subjective (depending on the network size, number of
analysts, and so on). Let us call α the cost of a false positive, and β the
cost of a false negative, and p the ratio of positive events on the total
(FP+TP

FP+TP+FN+TN). We can write the cost function:

C = FRα(1 − p) + (1 − DR)βp

The gradient of this cost function is a line with coefficient:

α(1 − p)

βp

If we trace it in the ROC diagram (Figure 3.2 on the right), we can de-
termine the minimum cost point on the ROC curve, and thus a satisfying
sensitivity value. In this locality, an algorithm that globally performs
worse could still be a better choice.

44

4 Network Intrusion Detection
Applications

4.1 Network Intrusion Detection Problem

Statement

The problem of network intrusion detection can be reformulated, in the
unsupervised learning framework, as the following: we wish to detect
anomalies in the flow of packets, or in the flow of connections, on a
TCP/IP network.

There is a number of points to consider:

• Any IP packet has a variable dimension, which on an Ethernet
network ranges between 20 and 1500 bytes.

• The first 20 bytes (but the number is not fixed) constitute the IP
header and the meaning of each byte and bit of the header is fully
described by the Internet standard; thus we can extract a number
of “features” from the IP header.

• Another sequence of up to 20 bytes is the header of the transport
protocol (such as TCP, UDP, ICMP or others). The same consid-
eration as above applies, with the exception that in many transport
protocols correlation between different packets is required to fully
understand the headers and their meaning.

• The data included in the payload is both heterogeneous and of
varying length: we could decode upper layer protocols such as
HTTP, FTP and so on, but this would require full session recon-
struction, and anyway it would be difficult to represent them as
simple features.

• Even if looking at protocols that do not need correlation and ses-
sion reconstruction, in order to understand what is happening we
need to correlate and track relations among different packets over
a time window.

45

4 Network Intrusion Detection Applications

In particular, the varying size of the payload data, and its heteroge-
neous nature which defies a compact representation as a single feature
is the single hardest problem to solve. As we have seen, most exist-
ing researches on the use of unsupervised learning algorithms for net-
work intrusion detection avoid this problem altogether by discarding
the payload and retaining only the information in the packet header
[117, 119, 121, 131, 132].

Ignoring the payload of packets, however, inevitably leads to infor-
mation loss: most attacks, in fact, are detectable only by analyzing
the payload of a packet, not the headers alone. Despite their reduced
coverage, these algorithms show interesting, albeit obviously limited, in-
trusion detection properties. In section 4.4 we will analyze these earlier
attempts in depth, with their points of strength and their shortcomings.

Some earlier works tried to deal with this problem, e.g. [129] uses
a rule-based algorithm to evaluate the payloads but, on the contrary,
ignores totally the meaning of the header fields; ALAD [133] detects
“keywords” in the protocols in a rather limited manner; PAYL [127]
uses statistical techniques on the payloads, ignoring the headers.

4.2 A two-tier architecture for Intrusion Detection

We propose a novel architecture for building a network based anomaly
detection IDS, using only unsupervised learning algorithms, and capable
of handling also the content of the payload of network packets (it has
been described originally in [134]).

It was our strong belief, based on the consideration that most attacks
show up only in the payload of the packets and not in the headers, that
the information loss generated by discarding the payload was unaccept-
able. So we focused on how to retain some of the information contained
in the payload, while keeping the problem tractable.

In order to solve this problem, we developed the concept of a two-tier
architecture (shown in Figure 4.1), which allows us to retain at least part
of the information related to the payload content. Our work hypothesis
was that on most networks, the traffic would belong to a small number
of services and protocols, regularly used, and so that most of it would
belong to a relatively small number of classes.

In the first tier of the system, an unsupervised clustering algorithm
operates a basic form of pattern recognition on the payload of the pack-
ets, observing one packet payload at a time and “compressing” it into
a byte of information (a “payload class” value). This classification can
then be added to the information decoded from the packet header (or

46

4.2 A two-tier architecture for Intrusion Detection

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

T
 IM

 E

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Headers are decoded
using domain knowledge

F
IR

S
T

 S
T

A
G

E

An unsupervised
learning algorithm

classifies the payload

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

TIME

A rolling window of packets

SECOND STAGE
(time correlation and anomaly detection)

Figure 4.1: Scheme of the overall architecture of the network based IDS

47

4 Network Intrusion Detection Applications

to a subset of this information), and passed on to the second tier.

The second tier algorithm instead takes into consideration the anoma-
lies, both in each single packet and in a sequence of packets. It is worth
noting that most of the solutions proposed by previous researchers in
order to analyze the sequence of data extracted by the packet headers
could be used as a second tier algorithm, complemented by our first tier
of unsupervised pattern recognition and clustering.

4.3 Payload Clustering Techniques

4.3.1 Requirements and algorithms selection

In the first tier we need to find an algorithm that receives as an input the
payload of a TCP packet1. On an Ethernet segment this means up to
1460 byte values which can be interpreted as pattern vectors of variable
size.

This algorithm must classify these vectors in a sensible way. TCP
and UDP are used to carry the data of an high number of upper layer
protocols. Relying on domain knowledge to pre-divide traffic by type
and decode it is not realistically feasible, and would leave us with the
same problem on how to handle the contents of each communication.

Additionally, we want to create an independent source of information,
based on the content of the payload. Using, for instance, the destination
port as a trusted information source, we would be assuming that each
port is actually used for its proper communication protocol. Thus a
connection which for example gives the output of a shell command over
a HTTP communication channel would not be detected an anomalous
connection.

The algorithm must thus be able to handle these heterogeneous pay-
loads belonging to different protocols, and classify them in a “sensible”
way. By sensible we mean that the transformation should exhibit three
important properties:

1. It should preserve as much information as possible about the “sim-
ilarity” between packets; in the following we will better define the
concept of “similarity”.

1In the following we will use TCP as an example, but our reasonings can be easily

generalized to UDP packets. ICMP packets, on the other hand, are less of a

problem, since the simple decoding of the protocol header is usually sufficient.

Some covert communication protocols use the payload of an ICMP packet, but

this can safely be ignored for simplicity at this level of analysis.

48

4.3 Payload Clustering Techniques

2. It should separate, as much as possible, packets from different
protocols in different groups; previous researches have shown that,
for instance, neural algorithms can recognize protocols automati-
cally [135].

3. Most importantly, since our final goal is to detect intrusions, the
classification should also separate, as much as possible, anomalous
or malformed payloads from normal payloads.

This is a typical problem of clustering, even if it can also be seen as
an instance of a pattern recognition problem, where we are trying to
characterize the recurring patterns in packet payloads in order to detect
anomalies [136]. A classic definition of clustering is:

Definition 4.1 Clustering is the grouping of similar objects from a
given set of inputs [137].

Another is:

Definition 4.2 A clustering algorithm is an algorithm by which objects
are grouped in classes, so that intra-class similarity is maximized and
inter-class similarity is minimized [138].

Clustering problems look deceivingly simple. In order to approach a
a clustering problem we must decide a measure of similarity between
elements, and also an efficient algorithm to find an acceptable solu-
tion, since finding the “optimal” solution (which maximizes both the
intra-class similarity and minimizing inter-class similarity) is an NP-
hard problem.

There is an endless variety of algorithms designed to solve this prob-
lem. Choosing the correct algorithm for a particular problem is often
difficult, but we can identify some of the properties we need for our par-
ticular problem. Firstly, many algorithms need a criterion to define a
correct or acceptable number of classes, while some others are capable
of automatically discovering a suitable number directly from the data,
and others are quite tolerant to an arbitrarily high choice. Secondly,
some algorithms are better than others when dealing with the presence
of outliers in training data. An outlier is classically defined as follows:

Definition 4.3 An outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was generated by a
different mechanism. [139]

We studied many different clustering algorithms (a comprehensive re-
view of which can be found in [140]), and we implemented three repre-
sentative and widely used approach: the K-means algorithm, which is

49

4 Network Intrusion Detection Applications

a centroid-based approach; the Principal Direction Divisive Partition-
ing (PDDP), a hierarchical divisive approach [141]; and Kohonen’s Self
Organizing Maps algorithm [142], which is a competitive, hard neural
approach.

Our results [134] show that the SOM algorithm is indeed able to sensi-
bly cluster payload data, discovering interesting information in an unsu-
pervised manner. Additionally, the SOM algorithm is robust with regard
to the choice of the number of clusters, and it is also resistant to the
presence of outliers in the training data, which is a desirable property.
In addition, we have shown that the SOM had the best performance
trade-off between speed and classification quality.

It is important to discuss how we can evaluate classification quality
at this stage. There are four main criteria to evaluate an unsupervised
classification:

• Inspection-based: by manually inspecting the classification and
checking if it “makes sense” to us.

• Expert-based: by letting an expert manually classify the same data
and see if the results are comparable.

• Metrics-based: using an inner quality criterion such as the ratio of
the average cluster radius to the inter-cluster distance.

• Task-based: by evaluating the algorithm against the result of the
task it is trying to accomplish; in our case this means evaluat-
ing the performance of the first tier using the performance of the
complete architecture as a criterion.

While the task-based criterion is appealing, we needed some prelim-
inary criteria to evaluate the algorithms without training a fully func-
tional architecture. Expert classification is not an option for large
datasets; so we resorted to manual inspection and “proof of concept”
tasks for a first evaluation of the quality of the classification.

In a first experiment, we considered how these algorithms classify
two sets of about 2000 packets: the first representing normal traffic,
the second being the dump of a vulnerability scan with the “Nessus”
tool (www.nessus.org). Nessus generates a huge volume of anomalous
traffic, composed of attacks and scans. In the following, the histograms
represent the number of packets (on y-axis) present in each cluster (on
x-axis). Please remind that for graphical reasons the number of packets
on y-axis may be differently scaled in the various pictures.

In particular, in Figure 4.2 we present the results of a 10 × 10 Self
Organizing Map (which therefore creates a division of the data in 100

50

4.3 Payload Clustering Techniques

Figure 4.2: Comparison between the classification of normal traffic
(above) and Nessus traffic (below) by a 10x10 SOM network

Figure 4.3: Comparison between the classification of normal traffic
(above) and Nessus traffic (below) over 50 classes by a prin-
cipal direction algorithm

clusters). The network was trained for 10.000 epochs with a represen-
tative subset of normal traffic. As you can see the difference in the dis-
tribution of packets is noticeable. Manual inspection proves that most
of the resulting clusters made “sense”, which means that the packets
falling in the same classes were either the same type of files, or the same
portions of protocols (i.e. all the e-mail traffic fell into a narrow group
of classes; all the FTP commands fell into another group of classes . . .).

We noted an extreme inefficiency in Matlab 6 built-in SOM algo-
rithms. A network training time is about linear in the product of the
map dimensions (i.e. for a n·m network, the time is about O(n·m)). The
training time is linear in the number of epoch, O(n). But, strangely, in
the Neural Network Toolbox implementation of Kohonen’s algorithms
the training time is not linear in the number of items in the training
set, nor in the number of dimensions of the vectors: it grows linearly

51

4 Network Intrusion Detection Applications

in both dimension and cardinality until it exhausts system resources,
but afterwards the I/O costs make it explode exponentially. The SOM
Toolbox (http://www.cis.hut.fi/projects/somtoolbox/) showed a
much better behavior, but still with some inefficiencies. Therefore, we
resorted to creating our own C implementation of the algorithm.

In Figure 4.3 we present instead the results of a division in 50 classes
operated by the principal direction divisive partitioning algorithm, in
the same experimental conditions used for the SOM. We can see that
also in this case the distribution of packets varies wildly between normal
and Nessus traffic. The manual inspection also confirms the impression
of a sensible classification.

It is worth noting that using the PDDP algorithm poses an additional
problem. At each step of the algorithm we must choose the cluster which
is going to be split. We would like, obviously, to choose the most “scat-
tered” leaf of the hierarchical divisive tree. Various ways to define the
scattering of a leaf have been studied in [143], but for our implementa-
tion we chose the simplest (a measure of variance). Other variants could
certainly be experimented, and maybe lead to better results.

The computational cost of the PDDP algorithm during training is
critical, because it happens that the first step of the algorithm is the
most costly (since the training set is split at each step). Normally, for
computing the Principal Direction, Matlab uses a SVD (Singular Value
Decomposition) algorithm with a time complexity O(p · q2 + p2 · q +
q3), where p and q denote the dimensions of the matrix (which are the
cardinality and the dimensionality of the training set). In our case, this
is way too heavy, so we used an efficient implementation of the Lanczos
algorithm, with bidiagonalization and partial reorthogonalization, which
offers a complexity of O(p·q ·r2), where r is the rank of the matrix and so
r = min{p, q} [144]. However, even this algorithm slows down (mainly
for memory constraints) as the cardinality of the training set grows.
This would be a problem in real-world applications: a spin-off of our
research dealt with the creation of an updating algorithm for computing
an approximate PDDP progressively [145].

In Figure 4.4, finally, we see that the K-means algorithm does not
behave as well as the other two algorithms. Aside from the distribution
of traffic which is not as distinct, manual inspection reveals that K-means
clusters are less significant. In addition, the random initialization of the
algorithm makes the quality of the final result unpredictable, since it
converges rapidly to a local (not global) minimum in the distribution of
the centroids.

K-means is the fastest of all the algorithm we tested, showing no per-
formance problems even in the training phase; however, the corrections

52

4.3 Payload Clustering Techniques

Figure 4.4: Comparison between the classification of normal traffic
(above) and Nessus traffic (below) over 50 classes by a K-
means algorithm

necessary to eliminate or reduce the random initialization weakness (for
instance using the so-called “global K-means” algorithm [146]) make
the algorithm intractable. There is, however, a divisive variant of the
K-means algorithm, which is compared to the PDDP algorithm in [147]
and which could solve the locality problem, still with a cost in perfor-
mance.

Thus, overall, the SOM algorithm works best, closely followed by the
PDDP algorithm which is hampered by its performance problems. K-
means is fast, but unreliable: since the SOM algorithm is fundamentally
as fast as K-means at runtime, even if slower in training, it is the best
overall choice for our first tier algorithm.

4.3.2 An introduction to Self Organizing Maps

Formally [142] Self Organizing Maps are used in order to map, in an un-
supervised, ordered but non linear manner, high-dimensional data over a
so-called “map” space, usually bidimensional, composed of discrete units
called neurons. Thus, a SOM compresses the information contained in
a high-dimensional input stream (input space or ∆) in a bi-dimensional
discrete output (node space or Γ), converting the nonlinear relationships
between data in geometrical relations between the points in Γ. SOMs
are used in various pattern recognition tasks such as voice recognition
or image analysis.

Neurons have a fixed position in the bidimensional neuron space Γ,
usually organized in a rectangular or hexagonal mesh (see Figure 4.5).
These positions do not change during training. Each neuron also has a
position in the k dimensional input space ∆. Usually, the position of a

53

4 Network Intrusion Detection Applications

Figure 4.5: Two variants of neuron meshes in Γ

neuron in ∆ is indicated as its weights, while its position in Γ is called
its coordinates.

Once the dimensions and the type of the neuron mesh are entered,
the neuron positions in Γ are automatically fixed, while their weights
in ∆ must be initialized. This initialization can be random in each of
the k dimensions, or linear, trying to uniformly cover the k dimensional
domain. This is obviously difficult to do if k is much higher than the
number of neurons.

The training of a SOM is both competitive and cooperative. Each input
vector is compared with the weights of all neurons in ∆, and the best
matching unit (BMU) is chosen (competitive element). The weights of
the BMU are then adjusted to better match the input. The neighboring
neurons in Γ are also adapted to the input (cooperative element).

The training process happens in epochs: in each epoch, all the vectors
in the training set are shown once to the network. There are two variants
of the SOM training algorithm: sequential or batch.

In the sequential variant, neuron weights are adjusted after each input
vector, using training function:

~mi(t + 1) = ~mi(t) + α(t)hci(t) · (~x(t) − ~mi(t)) ∀i ∈ N.

where t is the current training iteration, N is the set of all neurons on the
map, α(t) ∈ [0, 1] is the current learning rate (a nonincreasing function
of t), ~x(t) is the input of the t-th iteration of the learning process, ~mi(t)
is the vector of the weights of the i-th neuron at iteration t. Neurons
are chosen randomly from the dataset, or shown in order.

hci(t) is the proximity function between the BMU c (therefore c =
argmink(δ(~x(t), mk)) k ∈ N) and neuron i: it is a function of the dis-
tance between c and i in Γ, and of the proximity radius at iteration t,
ρ(t). ρ(t) defines the maximum distance for two neurons in Γ in order
to be considered neighbors; it is also a nonincreasing function of t which
starts from a value ρ(0) ≥ 1 and decreases to 1 during training.

54

4.3 Payload Clustering Techniques

(a) Gaussian Proximity Function (b) Bubble Proximity Function

Figure 4.6: Visual representation of different proximity functions: the
darker the color, the higher the adaptation factor

Generally, two alternative proximity functions can be used: a bubble
function or a Gaussian function. A bubble function has the form:

hci(t) =

{

1 ∀i ∈ N : γc,i ≤ ρc(t)
0 otherwise

.

In this case, all the neurons inside the neighborhood are modified by a
same quantity, while the ones outside the “bubble” stay fixed (see Figure
4.6(b)). A Gaussian function can be formulated as follows:

hci(t) = e−p ∀i ∈ N

where

p =
γc,i

2ρ2
c(t)

.

As can be seen, in this case the weights of all the neurons on the map are
modified in an exponentially decreasing quantity depending on distance
from the winning neuron (see Figure 4.6(a)).

Batch training uses instead the whole training data set at once at each
epoch. The input dataset is partitioned according to the Voronoi regions
created by each neuron, based on its weights in ∆. The new weights are
then calculated as:

~mi(t + 1) =

∑n
j=1 hci(t)~xj

∑n
j=1 hc,i(t)

,

where n is the total number of inputs in the training dataset, ~xj is the
j-th vector in the dataset,

55

4 Network Intrusion Detection Applications

Alternatively we can calculate the sum of vectors in each Voronoi
region:

~si(t) =

nVi
∑

j=1

~xj ∀i ∈ N,

where we denote with nVi
the number of vectors in the Voronoi region

i. Then, the weights of each neuron can be adapted using the formula:

~mi(t + 1) =

∑l
j=1 hi,j(t)~sj(t)

∑l
j=1 nVj

hi,j(t)
,

where l = |N | is the number of neurons on the map.

The training is composed of two consequential phases: ordering and
tuning. The difference among these two phases is in the learning rate
and neighborhood extension.

The ordering phase lasts for a given number of epochs, usually a few
thousands. The neighborhood distance starts as the maximum distance
between two neurons on the whole map, and it decreases to the initial
tuning neighborhood distance (which is a parameter). The learning rate
starts at the initial ordering phase learning rate, and decreases until it
reaches the initial tuning phase learning rate (these are parameters, too).
As the neighborhood distance and learning rate decrease over this phase,
the neurons of the network typically order themselves in the input space
with the same topology in which they are ordered in the map space.

The tuning phase lasts for all the rest of the training, and is usually
much longer and slower than the ordering phase. The neighborhood
distance is fixed throughout the tuning phase to a very small value (e.g.,
typically 1). The learning rate continues to decrease from the initial
tuning phase learning rate, but very slowly. The small neighborhood
and slowly decreasing learning rate fine tune the network, while keeping
stable the ordering learned in the previous phase.

The result is that the neurons’ weights initially take large steps to-
ward the area(s) of input space where input vectors are located. Then,
as the neighborhood size decreases to 1, the map tends to order itself
topologically over the input vectors. Once the neighborhood size reaches
1 and the ordering phase ends, the network should already be well or-
dered. During tuning, the learning rate is slowly decreased over a longer
period to give the neurons time to spread out evenly across the input
vectors. A variant of the algorithm uses a stop criterion for the tun-
ing phase, halting the algorithm when training converges (for instance,
when weights are almost unchanged from one epoch to the following).

56

4.3 Payload Clustering Techniques

The final result is that the neurons of a self-organizing map will order
themselves with approximately equal distances between them if input
vectors are evenly distributed throughout a section of the input space; if
instead input vectors occur with varying frequency throughout the input
space, the SOM tends to allocate more neurons in the more crowded
areas. Thus the SOM learns how to categorize inputs by learning both
their topology and their distribution.

In the recognition/runtime phase, each input vector is simply com-
pared against the weights of each neuron in ∆, making the SOM work
in a very similar way to a traditional K-means algorithm.

4.3.3 Using a SOM on high-dimensional data

As it is known, the computational complexity of unsupervised learning
algorithms scales up steeply with the number of considered features,
and the detection capabilities decrease correspondingly (this is usually
called the “curse of dimensionality”). This effect hits heavily against
the first tier of our system, which receives up to 1460 bytes of data. A
few algorithms can be optimized to treat data with many thousands of
dimensions, but only in the case that they are sparse (for instance, a
word/document incidence matrix in a document classification and re-
trieval problem [148]), but we are dealing with dense data. There are
alternative algorithms for clustering which are much faster in the learn-
ing phase than SOM, for example, the well known K-means algorithm is
one of the fastest. But during recognition even K-means is not more ef-
ficient than a SOM, so we cannot solve this problem by simply choosing
a different algorithm.

A traditional approach to the problem would use dimension reduction
techniques such as dimension scaling algorithms [149] or Principal Com-
ponent Analysis [150]. But our early experiments demonstrated that
such techniques are quite ineffective in this particular situation, since by
their nature they tend to “compress” outliers onto normal data, which
is exactly the opposite of what we want to achieve.

Since no alternative solution was viable, we developed various approx-
imate techniques to speed up the SOM algorithm [151]. The reference
machine for our tests is an Athlon-XP 3200 based computer with 1 GB
of DDR RAM, running GNU/Linux with a 2.6 kernel. All the tests,
unless otherwise stated, refer to a SOM with square topology, and a size
in the space of neurons of 10 × 10. The test are conducted on TCP
packets, as they constitute over 85% of Internet traffic.

As we can see from the first line of values in table 4.1, the throughput
of a straightforward C implementation of the Kohonen algorithm on our

57

4 Network Intrusion Detection Applications

hardware and software configuration is on average of 3400 packets per
second, which is enough to handle a 10 Mb/s Ethernet network, but
insufficient for a 100 MB/s network.

Thus, we developed some heuristics for speeding up the computation,
introducing minimal errors in the classification. The idea behind our
heuristic is simple. Let N be the number of classes, and d the number
of dimensions of the data. At runtime, the Self Organizing Map algo-
rithm consists simply of N evaluations of the distance function: in our
test implementation, an euclidean distance function over d dimensions.
Since the number of computations is N · d, in order to speed up the
computation we can try to reduce d by applying any dimensionality re-
duction technique: this, as we said before, cannot be done meaningfully
via dimensionality reduction techniques. However, since just a few pack-
ets contain a high number of bytes of payload, we can try to use just
the first d′ < d dimensions. Further experimental evaluation would then
of course be required in order to understand if the “reduced” payloads
carry the same information value as the complete packets.

If we do not want to reduce d, we must try to reduce the number of
evaluations N . A smart way to do this is to pre-compute a grouping of
the N = 100 centroids of the classes in K < N super-clusters, and then
select the winning neuron in a two-step procedure. First, we determine
which of the super-clusters the observation belongs to; and then we
evaluate the distance function just over the N ′ < N neurons belonging
to the winning super-cluster. The algorithm is heuristic, since it can
happen that the best matching neuron is not in the best matching super-
cluster, but as we will see the error rate is very low. Obviously the best
performance gain with this heuristic happens if each of the K super-
clusters is formed by ∼ N/K neurons, since the average number of
computations becomes d·(K+N/K) which has a minimum for K =

√
N .

If the clusters are not balanced then in the worst case the computational
cost is higher, and this leads to a lower overall throughput. For smaller
values of K the algorithm would be on average slower, and the error
rate statistically would be slightly lower.

To form the super-clusters, a first näıve idea would be to exploit the
map structure, which tends to keep “close” to each other the neurons
which are close in the map space. However, this does not work very
well experimentally, probably because of the high dimensionality of the
feature space, causing a 35% error rate with N = 3, and even 60% with
N = 10. Thus we resort to a K-means approach.

However, we must overcome two different issues in doing this. A
first issue has to do with the nature of K-means, which is inherently
initialization dependent, and prone to create very unbalanced clusters.

58

4.3 Payload Clustering Techniques

Experimentally, with N = 100, using K ≥ 4 does not create a bal-
anced structure of clusters, unless we correct the randomness of the
algorithm. Some authors proposed, in order to eliminate these weak-
nesses, the “global K-means” algorithm [146], which repeats K-means
with all the possible initializations. We use a different and faster ap-
proach, by using the algorithm a fixed number m of times, and choosing
the distribution in classes which minimizes the average expected number
of operations, roughly approximating the probability that an observa-
tion falls into the i-th super-cluster as proportional to the fraction Ni/N
(where Ni is the number of neurons in the i-th super-cluster). In Table
4.1 we refer to our variant of the K-means algorithm as “K-means+”,
and the column labeled ”Crossv.” reports the parameter m (number of
runs of the K-means algorithm).

A second, more difficult issue, is how to deal with the training phase.
During the training phase the neurons change their position, so theo-
retically we should repeat the K-means algorithm once for each training
step. We can avoid to do so, and fix an arbitrary update frequency, a
number of step after which we will recalculate the position of the cen-
troid. As an additional attempt to reduce the cost of the K-means step,
we decided to initialize the position of the K centroids to the same po-
sition they held before, even if this could lead the convergence to a local
optimum, creating a non-optimal clustering. Our tests showed that in
each case the cumulative approximations introduced by the algorithm
make the training very unstable, leading to results which are not com-
patible with the ones obtained by normal training, and in which the
properties of outlier resilience and robustness of the SOM algorithm are
impaired. We are working to find a way to overcome these issues with-
out sacrificing the throughput gain, but for now, our heuristic cannot
be applied and the only reliable way to speedup the training phase is to
lower the number of dimensions.

In Table 4.1 we report the runtime throughput of the algorithm, eval-
uated in packets per second, depending on different combination of the
parameters.

In order to evaluate the results, we refer to a well known study of
the statistical properties of Internet traffic [152]. Analyzing the traffic
flowing through an Internet Exchange data-center, they show that ap-
proximately 85% of the traffic is constituted by TCP packets, and that
a large proportion of TCP packets are 40 bytes long acknowledgments
which carry no payload (30% to 40% of the total TCP traffic). Zero-size
UDP packets, on the contrary, are almost non-existant. Since the first
tier analyzes only packets with a non-null payload, almost 30% of the
total traffic on the wire will not even enter it. The average size of a

59

4 Network Intrusion Detection Applications

Bytes Heuristics K Crossv. Packets/sec. Error %

1460 None - - 3464.81 -

1460 K-means 10 No 8724.65 0.8

1460 K-means+ 5 10 5485.95 0.4

1460 K-means+ 10 10 10649.20 0.8

800 None - - 4764.11 -

800 K-means+ 5 10 9528.26 0.5

800 K-means+ 10 10 15407.36 1.0

400 None - - 8400.45 -

400 K-means+ 5 10 28965.84 0.6

400 K-means+ 10 10 30172.65 1.2

200 None - - 10494.87 -

200 K-means+ 5 10 51724.70 0.8

200 K-means+ 10 10 65831.45 2.3

Table 4.1: Throughput and errors during runtime phase, calculated over
a window of 1.000.000 packets. The values are averages over
multiple runs of the algorithm on different portions of the
dataset

TCP packet is 471 bytes, of a UDP packet 157, and the overall average
is approximately 420 bytes. It is also known from theoretical modeling
and practical experience that an Ethernet network offers approximately
2/3 of its nominal capacity as its peak capacity. This means that a sat-
urated 10 Mbps Ethernet LAN carries about 2.000 packets per second.
Other statistics suggest that this value could be higher, up to 2.500 pps.

From Table 4.1, we can see that the original SOM algorithm, con-
sidering the full payload of 1460 maximum bytes per packet, with no
heuristics, operates at a speed that is acceptable for use on a 10 Mb/s
Ethernet network, but insufficient for a 100 MB/s network. However,
using the K-means algorithm with 10 classes and no cross-validation, we
obtain a much higher throughput (more than three times higher than
the original one) but also a 0.7% error rate. Introducing K-means+ and
crossvalidation, we obtain a better tradeoff between throughput and er-
ror rate, improving the former without compromising the latter. A speed
of 10.500 packets/second is enough to handle a normal 100 Mbps link
(considering also the presence of empty packets). If necessary, perfor-
mance could also be improved by reducing the number of bytes of the
payload.

It can be also shown that the use of our modified algorithm does not
diminish the detection capabilities of the system. For better clarity, we

60

4.3 Payload Clustering Techniques

will demonstrate this alongside with the overall evaluation of the system.

4.3.4 Meaningful metrics in high-dimensional spaces

When using similarity-based algorithms, obviously the choice of a sim-
ilarity criterion is of uttermost importance. Given that, theoretically,
there is no indication of a good criterion for our particular field of in-
terest (because ours is, as of our knowledge, the first attempt to charac-
terize packet payloads by the means of clustering algorithms), we have
observed similar problems in different fields in literature.

The two most used distance criteria in SOM literature are the inner
product and the euclidean metric. Since the inner product is closely
related to the so-called cosine distance, it is particularly useful in those
cases where attributes have values whose characteristic is to be either
zero or nonzero. We have a range of discrete values with different mean-
ings instead, so we resorted to the euclidean distance. While this choice
has no theoretical support in a problem like ours, our experiments have
shown that it works well. More work could be done to study other,
maybe better suited, distance functions, for instance lexical distances,
matching percentage, or similars. The problem is that introducing such
non-metric distances would require to modify heavily the SOM algo-
rithm, and this would be ground for a deeply interesting theoretical
work which is quite outside the scope of this thesis.

In recent researches, however, the effect of the curse of dimensionality
on the concept of “distance metrics” has been studied in detail. In
high dimensional spaces such as the one we are considering, the data
become very sparse. In [153, 154] it is shown that in high dimensional
spaces the concept of proximity and distance may not be meaningful,
even qualitatively.

Let Dmaxd be the maximum distance of a query point to the points in
a d-dimensional dataset, and Dmind the minimum distance, and let Xd

be the random variable describing the data points. It has been shown,
under broad conditions, that if

limd→∞ var

(‖ Xd ‖
E[‖ Xd ‖]

)

then
Dmaxd − Dmind

Dmind

This means, plainly, that in a high dimensional space the difference
between the distance of a query point to the farthest and to the nearest
point in the dataset tends to be of a smaller order of magnitude than the

61

4 Network Intrusion Detection Applications

minimum distance: in other words, the nearest neighbor identification
becomes unstable and does not give much information.

However, most of the hypotheses of such theoretical works do not hold
for our variables. We have experimentally observed that in our setup
this effect does not happen: most points are extremely well character-
ized into dense and compact clusters. In order to better understand
if this condition applied to our dataset, we recursively filtered out the
most compact clusters and the “farthest” centroids, and analyzed the
results, and in each case the difference between Dmin and Dmax was
still significant. We thus concluded that the effect observed in the cited
articles does not apply to our particular situation, probably because we
are working in a compact region where the maximum possible distance
between two different points is

√
2552 × 1460.

In [154] it was also reported that in high dimensional spaces the L1

metric, or “Manhattan distance”, behaves considerably better than the
usual euclidean metric we applied. In [155] distance metrics with a
fractional index fǫ(0, 1) are also proposed.

We explored the application of these distance metrics and their effects
on the classification of packets. However, in our particular application
the use of these alternate distance seems to lump all the data in a few
cluster, diminishing the overall recognition capabilities of the algorithm
instead of enhancing it.

We are currently studying the applicability of wavelet-based distance
metrics such as the ones proposed in [156].

4.3.5 Experimental results: Pattern Recognition Capabilities
of the First Tier

For repeatability, we used for our experiments the datasets created by
the Lincoln Laboratory at M.I.T., also known as “DARPA IDS Eval-
uation dataset” or IDEVAL dataset. In Section 4.6 we will analyze
thoroughly the reasons of this choice.

Since our objective is to add the classification of payloads produced by
the first tier as one of the features analyzed by the second tier outlier de-
tector, a precondition is that attack payloads are “classified differently”
from normal payloads. As we already noted, this means that the first
tier must be able to separate and recognize packets from different pro-
tocols, and also that it should separate, as much as possible, anomalous
or malformed payloads from normal ones.

In Figure 4.7 we present a demonstration of the recognition capabili-
ties of a 10× 10 Self Organizing Map (using our modified algorithm for
higher throughput) that creates a division of the data in 100 clusters.

62

4.3 Payload Clustering Techniques

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

Class

N
um

be
r

of
 P

ac
ke

ts

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Class

N
um

be
r

of
 P

ac
ke

ts

Figure 4.7: Comparison between the classification of a window of traffic
and the traffic destined to port 21/TCP by a 10x10 SOM
with our modified algorithm.

The network was trained for 10.000 epochs on TCP packet payloads.
The histograms represent the number of packets (on y-axis) present in
each cluster (on x-axis). Here and in the following, for graphical reasons,
the number of packets on y-axis may be differently scaled in the various
graphs. In Figure 4.7 we suppressed from the output the representation
of classes 90 and 93, which are the most crowded and less characterized
clusters in the classification, for better display.

On the left side, we can see the classification of a whole window of
traffic in the day Thursday, 2nd week of the 1998 DARPA dataset. On
the right side, we can see how the network classifies the subset of the
packets with the destination port set to 21/TCP (FTP service command
channel). It can be observed that all the packets fall in a narrow group
of classes, demonstrating a strong, unsupervised characterization of the
FTP protocol, which is the first key characteristic we need.

To show that this happens constantly, in Figure 4.8(a) we show the
classification of the TCP/IP packets of another whole day (Monday, 2nd
week) of the 1999 DARPA dataset, with the above described SOM. Fig-
ure 4.8(b) shows how the packets with destination set to port 21/TCP
are very well characterized. The same happens for port 80/TCP (HTTP),
as shown in Figure 4.8(c). In addition, the two protocols are very dif-
ferent. For the same graphical reasons as above, we have not shown the
class of “empty packets”.

In Figure 4.9 we can see the plot of the same tests, but with a SOM
using our heuristics for added speedup. The histograms are perfectly in
line with the result above, with minimal differences in classifications.

In order to evaluate the recognition capabilities of the new algorithm,

63

4 Network Intrusion Detection Applications

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

(a) Total

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

(b) Port 21

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a
c

k
e
ts

(c) Port 80

Figure 4.8: Classification of payloads obtained by a non-heuristic SOM,
on the whole traffic and on two specific ports

64

4.3 Payload Clustering Techniques

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

(a) Total

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

(b) Port 21

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90

Class

N
u

m
b

e
r

o
f

P
a
c

k
e
ts

(c) Port 80

Figure 4.9: Classification of payloads obtained by a heuristic SOM, on
the whole traffic and on two specific ports

65

4 Network Intrusion Detection Applications

we must also see if it can usefully characterize traffic payloads for dif-
ferent protocols, and detect anomalous attack payloads from normal
payloads.

We recreated attacks using packet dumps available on the Internet,
as well as scripts and attack tools created by ourselves or downloaded
from the ExploitTree project [157] or through the MetaSploit Framework
[158]. The results are encouraging: for instance, the payload of the
format string WU-FTPd bug exploit (CVE-2000-0573) is classified in
class 69, which is not one of the usual classes for FTP traffic.

Even more interesting are the results we obtain when analyzing the
globbing denial-of-service attack (CERT Advisory CA-2001-07). The
attack is polymorph, since the aggressor tries to overload the FTP server
by sending a long string of wild-card operators that must be expanded.
Any combination can be used, e.g. LIST */../*/../*/. . . , or LIST

/./*/.*/*/. . . . It is difficult to write a good signature for this attack
for misuse based IDSs. In order to achieve a generalized match with
a signature based system such as Snort we need to write a signature
matching /*, thus generating a lot of false positives. The SOM classifies
all the known variations of the attack in a single class, which does not
contain any normal FTP packet.

Another format string attack against Wu-FTPd (CVE-2000-0574) is
classified into class 81, which does not contain any normal FTP traf-
fic. This attack uses a long “padding” composed by NOP instructions
(0x90), for reasons similar to the ones we discussed before in the context
of buffer overflow attacks. Most IDSs detect a long sequence of NOP as
a possible shellcode, but sneaky attackers use a jump to the following
instruction (0xeb 0x00) instead of a NOP to fool them. But even if we
substitute the NOP codes with 0xeb 0x00 and run the attack again, the
system still classifies it into the anomalous class 81.

In Figure 4.7 a 10 × 10 SOM (with hexagonal topology) has been
trained on the TCP packet payloads of the usual dataset. We extracted
then the subset of packets with destination port 80/TCP, in a day where
various attacks on the same port were present (for graphical reasons, the
scale of y-axis is in percentage, not absolute). As it can be seen, the at-
tacks consistently fall outside of the scope of the normal characterization
of HTTP protocol. Other cases are similars: let us pick two examples.
Firstly: a race condition and buffer overflow bug in the “ps” command,
which is exploited over a perfectly legitimate telnet connection. 99.76
% of packets destined to TCP port 23 fall in classes 91 and 95, and all
of them fall between class 90 and 95. The packets containing the attack
fall instead in classes 45, 54, 55, 65, 71, 73 and 82, which are not nor-
mally associated with DPORT 23. This happens consistently over each

66

4.4 Multivariate Time Series Outlier Detection

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Payload Class

%
 o

f P
ac

ke
ts

 in
 C

la
ss

attacks
normal traffic

Figure 4.10: A comparison between the classification of attack payloads
and normal traffic payloads on port 80/TCP

instance of the attack.

A similar, albeit less defined, situation happens in the case of a buffer
overflow in the “sendmail” MTA daemon. The packets destined to port
25 are less characterized, but over 90 % of them fall into 7 classes. The
attack packets fall instead into three different classes that contain less
than 3% of the normal packets destined to port 25. This helps us to
understand that an important requirement for the second tier detection
algorithm will be to keep track of anomaly scores in the recent past, and
that the second tier cannot be a crisp, rule-based system, but must be
a more statistical and fuzzy one.

In a famous article, some years ago, J. Frank, [159], while comment-
ing the future trends of artificial intelligence, pointed at clustering al-
gorithms as a possible future approach to intrusion detection. His early
intuition was indeed correct.

4.4 Multivariate Time Series Outlier Detection

4.4.1 Requirements and available algorithms

The second tier algorithm must detect anomalies and outliers over a
multivariate time series with at most 30 features. The algorithm should

67

4 Network Intrusion Detection Applications

deal with two problems:

1. Intra-packet correlation: to analyze the content of each packet
looking for indicators of anomaly (for instance, a packet belonging
to a class which is not usually associated with a particular port);

2. Inter-packet correlation over time: to recognize anomalous distri-
butions of packets (for instance, a sudden burst of packets with
normally rare characteristics).

Since it must analyze the correlation among different consecutive vec-
tors of observations, the algorithm must be either endowed with some
form of memory, or should observe a rolling window of data.

There is an open trade-off at this point, since enlarging the time win-
dow (or, correspondingly, increasing the weight of the memory) for a
better correlation could blind the system to atomic attacks, which rep-
resent a significant share of network attacks. In fact, most misuse-based
network IDS signatures can be applied even to a single packet at a time
(except for what we observed in Section 3.3.6, which makes it more con-
venient to perform stream reassembly). But a statistical system, by its
own nature, could be better at detecting significant variations over a
long time than single attack packets.

A wide range of algorithms that can be used to detect anomalies
in time series exist (a survey of outlier detection techniques can also
be found in [160]), but they are mostly limited to continuous variables
(we have discrete and categorical values) and to strictly ordered series.
Packets are neither totally numeric nor strictly ordered. Missing these
characteristic, we cannot use powerful mathematical instruments such
as spectral analysis.

Additionally, since in a real world situation it would be difficult to
collect a large base of attack-free traffic in order to train the algorithm,
we need it to be resistant to the presence of outliers in the training
dataset.

Excluding supervised algorithms, we are left with a handful of can-
didates. A first approach (which we tested in [134]) is to map a time
series onto a rolling window of observation, and then use regular cluster-
ing techniques for finding outliers. For instance, SOMs have been used
in this fashion, [120, 121] on either connection data, or on packet header
data (discarding the payload). However, it has also been proposed [161]
that this approach is deeply flawed for statistical reasons. Other au-
thors propose instead to explicitly use time as a feature in a clustering
algorithm [122]. This is an outright mistake, since time on a network is
quite relative (even more than it is already by its own nature), and since

68

4.4 Multivariate Time Series Outlier Detection

a clustering algorithm such as a SOM cannot handle in any meaningful
way a linearly increasing dimension like that.

Instance Based Learning (IBL) is a class of algorithms which represent
concepts by the means of a dictionary of “already seen” instances. There
are both supervised and unsupervised variants, and an unsupervised one
has been proposed for host based intrusion detection purposes [162].
However, it seems that this algorithm works well for problems where
the number of instances in the dictionary is quite limited. More studies
would be needed to apply this approach to network data.

PHAD, Packet Header Anomaly Detection [117], is a simple statistical
modeling method which has been applied to data extracted by packet
headers. By using a really simple method (which grants great perfor-
mances), PHAD detects about half of the attacks in the DARPA 1999
dataset. The algorithm could be easily extended with the classification
output by the first tier of our architecture.

NETAD [132] is an evolution of PHAD and LERAD (Learning Rules
for Anomaly Detection [131]). NETAD prefilters traffic using various
rules (based on protocol type and sequence numbers), and then models
nine non-disjunctive subsets of traffic. The first 48 bytes of each packet
are taken into account and modeled. Denoting with A(b, i) the anomaly
score of the value i for the byte b, NETAD uses the following formula:

A(b, i) =
tbnb(1 − rb

256)

rb
+

tb,i
fi,b + rb

256

where nb is the number of packets since a previously unseen value last
appeared in b during training; tb is the number of packets since the last
anomaly was flagged in b during runtime; rb is the number of different
values allowed for b, which is equal to the number of different values
observed during training; tb,i is the number of packets since b has last
assumed value i; fi,b is the frequency of b = i during training.

The statistical models gives thus an high anomaly rating to values that
are either very rare, or that have not happened for a long time. Both
PHAD and NETAD have the conspicuous disadvantage that they do not
identify intra-packet anomalies, but just inter-packet sequence anoma-
lies. In addition, they require to be trained on attack-free datasets.

MUSCLES (MUlti-SequenCe LEast Squares) is an algorithm based
on multivariate linear regression [163] for outlier detection in correlated
time series. We describe our experience with MUSCLES in section 4.4.2.

Information theoretic methods such as the Parzen Window method
have been proposed in [119]. They have the advantage that being formu-
lated as a statistical hypothesis test uses as a parameter an “acceptable
false detection rate” which can be used for tuning, and that they do not

69

4 Network Intrusion Detection Applications

need training. However we experimented their runtime to be unaccept-
able. A much better alternative, which shares many of the features we
have describe, is to use a discounting learning algorithm such as the one
used in the SmartSifter prototype [126], which combines the elegance
of a statistical approach with a smooth running time. After a lot of
testing, we decided that a modified version of SmartSifter was the best
approach. We will describe this algorithm in depth in Section 4.4.3

In [164] a framework is proposed for using Hidden Markov Models
for modeling multivariate time series. The approach is indeed interest-
ing and novel, but does not seem suitable for high-speed modeling and
recognition.

4.4.2 MUSCLES

MUSCLES (MUlti-SequenCe LEast Squares) is an algorithm based on
multivariate linear regression [163] for outlier detection in correlated
time series.

Let us consider k time series s1, . . . , sk. Suppose now that we want to
make the best estimate of s1[t] (let us call it ŝ1[t]), given s1[t− 1], s1[t−
2], . . . , s1[t−w] and s2[t], s2[t− 1], . . . , s2[t−w]; s3[t], s3[t− 1], . . . , s3[t−
w]; . . . ; sk[t], sk[t − 1], . . . , sk[t − w].

We can estimate ŝ1[t] as a linear combination of the values of the
signals in a time window of width w. Formally:

ŝ1[t] = a1,1s1[t − 1] + · · · + a1,ws1[t − w] + a2,0s2[t] +

a2,0s2[t] + a2,1s2[t − 1] + · · · + a2,ws2[t − w] +

· · ·
ak,0sk[t] + ak,1sk[t − 1] + · · · + ak,wsk[t − w],

∀t = w + 1, . . . , N. (4.1)

Equation 4.1 is a linear equation with v = k(w + 1) − 1 independent
variables. Through linear regression we can compute the set of values
for the regression coefficients ai,j in order to minimize the squared errors
∑N

i=1(s1[t] − ŝ1[t])
2.

Naively, we could compute the best vector of coefficients ~a as:

~a = (XT × X)−1 × (XT × ~y) (4.2)

where X is the N × v matrix, where each line j holds the independent
variables of Equation 4.1 for t = j. However, this equation is extremely
inefficient, in terms of spatial complexity (O(N × v), with an a priori
unbounded N), as well as in terms of computational complexity (O(v2×
(v + N)) for each new incoming observation).

70

4.4 Multivariate Time Series Outlier Detection

Using the matrix inversion lemma [165] we can obtain a much simpler
form of the equation. Let Xn denote matrix X when N = n and let
Gn = (XT

n × Xn)−1. We can obtain Gn from Gn−1 using the following
relation (see [163] for details on the derivation of this equation):

Gn = Gn−1 − (1 + ~x[n] × Gn−1 × ~x[n]T)−1

× (Gn−1 × ~x[n]T) × (~x[n] × Gn−1), n > 1 (4.3)

where ~x[n] is the line vector of the independent variables value at t =
n (i.e. the new input vector). Equation 4.3 spares us to perform a
matrix inversion since 1+~x[n]×Gn−1 ×~x[n]T is a scalar value; thus the
computation is O(v2). Additionally, we just need to keep in memory Gn,
which requires O(v) space (with v ≪ N). We can also add to Equation
4.3 a forgetting factor λ ∈ (0, 1] to account for slow changes in the
correlation laws of the source. If we redefine the problem as minimizing
∑N

i=1 λN−1(y[i]− ŷ[i])2, we obtain the following equations (with n > 1):

Gn =
1

λ
Gn−1−

1

λ
(λ+~x[n]×Gn−1×~x[n]T)−1×(Gn−1×~x[n]T)×(~x[n]×Gn−1)

and
~an = ~an−1 − Gn × ~x[n]T × (~x[n] × ~an−1 − y[n]).

Since we have defined an outlier as a value which is radically dif-
ferent than expected, if we suppose estimation error to be a Gaussian
distributed random variable with standard deviation σ, we can label as
anomalous any value of ŝ1 which differs from s1 by more than 2σ or 3σ.

Despite its efficiency, this algorithm has the obvious disadvantage that
it can be applied only to variables for which a metric concept makes
sense, i.e. where average and standard deviation can be computed: this
is evidently not our case. The experimental results we obtained with
this algorithm are therefore predictably bad.

A different approach, but with similar limitations, is the algorithm
SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series) [166].
Given n numerical data streams, whose values are observed in a dis-
cretized way, SPIRIT can incrementally find correlations and hidden
variables, which summarize the key trends in the entire stream collec-
tion. It can do this quickly, with no buffering of stream values and with-
out comparing pairs of streams. Moreover, it is a single pass algorithm,
and it dynamically detects changes. The discovered trends can also be
used to immediately spot potential anomalies, to do efficient forecasting
and, more generally, to dramatically simplify further data processing.
Our experimental evaluation and case studies show that SPIRIT can
incrementally capture correlations and discover trends, efficiently and
effectively, but only on metric data.

71

4 Network Intrusion Detection Applications

4.4.3 SmartSifter

SmartSifter [126, 167, 168] is an unsupervised algorithm for outlier de-
tection in multivariate time series based on discounting learning. It is
designed for online usage, and it uses a “forgetting factor” in order to
adapt the model to non-stationary data sources. The output of Smart-
Sifter is a value expressing the statistical distance of the new observation,
which means “how much” the new observation would modify the model
currently learned. SmartSifter has also the great advantage to be able
to use both categorical and metric variables. In the following sections
we will briefly describe the algorithm, and how we modified it to adapt
it to our needs.

SDLE Algorithm: handling categorical variables

The SDLE algorithm is used to learn probability densities associated
with categorical variables.

Suppose we have n categorical variables. Let A
(i) =

{

a
(i)
1 , . . . , a

(i)
ui

}

(i = 1, . . . , n) be the domain of the i-th variable. We partition the

domain in disjoint sets such that
{

A
(i)
1 , . . . , A

(i)
vi

}

(i = 1, . . . , n) where

A
(i)
j ∩ A

(i)
k = ∅ (j 6= k) and A

(i) = ∪vi

j=1A
(i)
j . Inside the n-dimensional

space we can identify the cell A
(1)
j1

× · · · × A
(n)
jn

as the j-th cell. The
domain is thus partitioned in k = v1 · · · · · vn cells.

The probability density function (or histogram) assumes a constant
value for each cell, expressed by θ = (qi, . . . , qk) where

∑k
j=1 qj = 1,

qj ≥ 0 and qj denotes the probability value for the j-th cell. The learning
algorithm makes use of the “forgetting factor” rh ∈ [0, 1]: the lower this
value, the more the algorithm is influenced by past events.

In algorithm 1 we used the following notation:

δt(j1, . . . , jn) =

{

1 if x ∈ A
(1)
j1

× · · · × A
(n)
jn

0 otherwise

Also, Tt(j1, . . . , jn) represents the number of times that an input falls
into cell j. To see the meaning of the forgetting factor let us consider
the equation on line 7:

q(t)(j1, . . . , jn) :=
Tt(j1, . . . , jn) + β

(1 − (1 − rh)t)/rh + kβ
(4.4)

Considering the denominator, we can see in Figure 4.11 the plot of

f(t) = 1−(1−rh)t

rh
with rh = 0.2 and rh = 0.9. We can see that, the

72

4.4 Multivariate Time Series Outlier Detection

Algorithm 1 The SDLE algorithm

Require: a partitioning of domain
{

A
(i)
1 , . . . , A

(i)
vi

}

(i = 1, . . . , n), rh

and β ∈ (0, 1)
1: T (ji, . . . , jn) ⇐ 0(1 ≤ ji ≤ vi, i = 1, . . . , n){Initialization}
2: t ⇐ 1 {Parameter updating}
3: while (t ≤ T) do
4: ~xt = read(x1, . . . , xn)
5: for all j do {for each cell do:}
6: Tt(j1, . . . , jn) ⇐ (1 − rh)Tt−1(j1, . . . , jn) + δt(j1, . . . , jn)

7: q(t)(j1, . . . , jn) ⇐ Tt(j1,...,jn)+β
(1−(1−rh)t)/rh+kβ

8: end for
9: for all ~x ∈ A

(1)
j1

× · · · × A
(n)
jn

do

10: p(t)(~x) := q(t)(j1,...,jn)

|A
(1)
j1

|····|A
(n)
jn

|

11: end for
12: t ⇐ t + 1
13: end while

larger rh is, the less t must be in order to influence the learning. In the
following, unless we specify otherwise, the tests have been executed us-
ing the parameters suggested by the authors, β = 0.5 and rh = 0.0003.
Different values have sporadically better results, but usually result in
more brittle performances.

SDEM Algorithm: handling continuous variables

In [126] two different versions of the SDEM algorithm are proposed: a
parametric one, and a kernel-based one. We will focus on the parametric
version, which consistently performs better in the authors’ own tests. It
uses a classical Gaussian mixture model:

p(~y|θ) =
k

∑

i=1

cip(~y|~µi, Λi),

where k ∈ N , ci ≥ 0,
∑k

i=1 ci = 1 and each p(~y|~µi, Λi) is a multivariate
Gaussian distribution with d variables, where d is the number of con-
tinuous variables in the model. The vector of the averages is ~µi and the
covariance matrix is Λi.

Let s be an iteration index; we call a sufficient statistic

S
(s)
i = (c

(s)
i , ~µi

(s), Λ
(s)
i) =

73

4 Network Intrusion Detection Applications

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
r
h
 = 0.9

r
h
 = 0.2

Figure 4.11: Plot of function f(t) = 1−(1−rh)t

rh

1

t
· (

t
∑

u=1

γ
(s)
i (u),

t
∑

u=1

γ
(s)
i (u) · ~yu,

t
∑

u=1

γ
(s)
i (u) · ~yu~yT

u) (i = 1, . . . , k),

where

γ
(s)
i (u) =

c
(s−1)
i p(~yu|µ(s−1)

i , Λ
(s−1)
i)

∑

j=1 kc
(s−1)
j p(~yu|µ(s−1)

j , Λ
(s−1)
j)

.

We also define S
(s)
i (v) (i = 1, . . . , k) for the input ~yu:

S
(s)
i (v) =

1

t
· (γ(s)

i (v), γ
(s)
i (v) · ~yv, γ

(s)
i (v) · ~yv~y

T
v).

The parameters of the algorithm are the stabilizing parameter α ∈
[1, 2] and the forgetting factor r. The SDEM algorithm is shown in
Listing 2.

SDEM has time complexity O(d3k), but it can be reduced to O(d2k)
by adopting algorithms for computing the determinant and the inverse
of the covariance matrices that use the estimate of the previous iteration.

It is easy to see that:

c
(t)
i =

t
∑

j=1

(1 − r)t−jrγ
(j)
i

which means that the smaller r, the more the old inputs weigh over the

estimate. The values of µ
(t)
i and Λ

(t)
i given as output by the updating

formulas are such that the weighted sum of the logarithmic likelihoods
is maximized, i.e.:

t
∑

j=1

(1 − r)t−jrγ
(j)
i ln p(~yj |µ(j)

i , Λ
(j)
i).

74

4.4 Multivariate Time Series Outlier Detection

Algorithm 2 The SDEM algorithm

Require: r, α, k.

1: c
(0)
i ⇐ 1

k

2: ~µi
(0) initialized uniformly dispersed over the input space

3: ~µi
(0),c

(0)
i , ~̄µ

(0)
i ,Λ

(0)
i ,Λ̄i

(0)
(i = 1, . . . , k){Initialization}

4: t ⇐ 1 {Parameter updating}
5: while (t ≤ T) do
6: read ~yt

7: for all i = 1, . . . , k do

8: γ
(t)
i := (1 − αr)

c
(t−1)
i p(~yt|µ

(t−1)
i ,Λ

(t−1)
i)

Pk
j=1 c

(t−1)
j p(~yt|µ

(t−1)
j ,Λ

(t−1)
j)

+ αr
k

9: c
(t)
i := (1 − r)c

(t−1)
i + rγ

(t)
i

10: ~̄µ
(t)
i := (1 − r) ~̄µ

(t−1)
i + rγ

(t)
i · ~yt

11: ~µi
(t) := 1

c
(t)
i

~̄µ
(t)
i

12: Λ̄i
(t)

:= (1 − r)Λ̄i
(t−1)

+ rγ
(t)
i · ~yt~y

T
t

13: Λ
(t)
i := 1

c
(t)
i

Λ̄i
(t) − ~µi

(t) ~µi
(t)T

14: end for
15: t ⇐ t + 1
16: end while

75

4 Network Intrusion Detection Applications

Outlier factor: Hellinger distance

After applying the previous algorithms to (~xt, ~yt) we must compute how
much the adjoint probability p(t)(~x, ~y) differs from p(t−1)(~x, ~y) with the
adaptation to the new sample. The Hellinger distance is defined as
follows:

SH(~xt, ~yt) =
1

r2
h

∑

~x

∫

(
√

p(t)(~x, ~y) −
√

p(t−1)(~x, ~y))2d~y.

The intuitive meaning of the formula is to compute how much the
p(t) distribution differs from p(t−1) after the learning step on the input
(~xt, ~yt).

This distance cannot be easily computed in this form, so we must re-
sort to heuristics and approximations (as pointed out in [167]) to com-
pute this distance online.

In order to automatically tune the threshold beyond which a data
vector is to be considered an outlier, we modified SmartSifter by intro-
ducing a training phase during which the distribution of the anomaly
scores is approximated, and an estimated quantile of the distribution is
also computed. In this way we can directly set the IDS sensitivity as
the percentage of packets we want to consider as outliers.

As we can see from Figure 4.12, the distribution of scores cannot be
approximated well by a normal distribution, so computing the sample
mean and variance would not be of help.

Therefore, we discretized the distribution with a quantization interval
i, assuming that in each interval there is a uniform distribution, and
computing the quantile of this discretized approximation. Of course,
increasing i makes training faster and the approximation rougher.

The quantile Q of order q ∈ [0, 1] can be determined through the
following formula:

Q(q) = s ·
(

j +
q − ∑j

i=0 P (SH ∈ Ii)

P (SH ∈ Ij+1)

)

,

where Ij is the interval in the discretization such that P (SH ∈ Ij) < q
and P (SH ∈ Ij+1) ≥ q. Thus, setting the threshold of the anomaly score
to Q(q) the ratio of packets flagged as anomalous is more or less q.

As opposed to this totally unsupervised outlier determination, in [168]
the authors of SmartSifter proposed a mixed supervised/unsupervised
approach.

76

4.4 Multivariate Time Series Outlier Detection

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Score

N
um

be
r

of
 P

ac
ke

ts

Figure 4.12: Distribution of scores

4.4.4 Feature selection

Feature selection is an important step for any learning application. We
wish to stress this point, since the algorithms proposed in the literature
have been applied to more or less arbitrary selections of features of the
packets: our tests suggest that a deeper analysis should be done to
determine which features are really important and which can be safely
discarded. The importance of correctly choosing features for machine
learning problem has been widely discussed in literature (see [169]), and
our problem is not an exception: in our tests, keeping all the features
effectively blinded the system, while accurately selecting a subset of
them brought forth good results.

Feature Subset Selection for multivariate time series is a well studied
process. In an unsupervised setting such as ours, unsupervised tech-
niques for feature selection should be employed [170]. Unsupervised FSS
techniques usually compute the similarity between features and removes
redundancies in order to reduce the number of features. Usually this is
accomplished through partitioning or clustering of the original feature
set into partitions, each of which will be then represented by a single
representative feature to form the reduced subset. A very representative

77

4 Network Intrusion Detection Applications

example of FSS technique can be found in [171]. However, no reliable
method exists which takes into account categorical variables.

Therefore, we resorted to a much simpler approach, by testing different
combinations of the variables. As a first consideration, we chose to
use only categorical variables, since the SDLE algorithm is much more
efficient than the SDEM algorithm (which contains matrix inversions)
and since the non-categorical values (e.g. the Window Size and the TTL
features) are not really significant and exhibit flaws due to the artificial
generation (see Section 4.6 below for the details)

A set containing source port, destination port, TCP flags, source and
destination address and the payload classification worked best in our
setup. As noted above, the domain of the variables must be divided in
cells. In our case we operated as follows:

• For source and destination ports, we divided the domain according
to well known and widely used services, and created an “other
ports” fallback class for unknown or upper ports.

• IP addresses were classified as either “external”, or using three
arbitrary “classes” of machines on the internal network.

A future extension of this work could automatically reconfigure the
input features based on the particular network setup, provided that a
reliable unsupervised algorithm for automatically selecting the feature
subset is developed.

4.5 Evaluation of the proposed architecture

4.5.1 Our results

In order to evaluate our architecture in a repeatable manner, we ran
the prototype over various days of traffic drawn from the 4th week of
the 1999 DARPA dataset. We also added various attacks against the
Apache web server and against the Samba service generated through the
Metasploit framework (www.metasploit.org). The average results are
reported in Table 4.2. The first column contains the sensitivity threshold
set for the algorithm, and as we described it is a good statistical predictor
of the percentage of data that will be flagged as outliers by the algorithm.
Therefore, it is also a good predictor of the false positive rate, if the
attack rate is not too high. The prototype is able to reach a 66.7%
detection rate with as few as 0.03% false positives.

Examples of attacks which are detected easily by our algorithm are
the ones indicated in the “truth file” of the dataset as land, secret,

78

4.5 Evaluation of the proposed architecture

Threshold Detection Rate False Positive Rate

0.03% 66.7% 0.031 %

0.05% 72.2% 0.055 %

0.08% 77.8% 0.086%

0.09% 88.9% 0.095%

Table 4.2: Detection rates and false positive rates for our prototype

sechole, loadmodule and ps (for a complete description of the attacks,
see [172, 173]). Attacks that are less easy to detect, but still catched by
our system are mailbomb, httptunnel, crashiis and processtable.

Attacks such as sqlattack and phf are more difficult to detect, prob-
ably because they are very similar to normal traffic.

In order to evaluate how well the proposed system performs, in the
next sections we will compare it against two comparable state-of-the-art
systems. As we will see, our prototype shows a better detection rate,
with a number of false positives which is between one and two order of
magnitudes lower than such systems. It should be noted that we refer,
as much as possible, to the original experimental data as reported in
literature, because in many cases we were not fully able to reproduce
the results with the same degree of accuracy claimed by the authors.

4.5.2 Comparison with SmartSifter

The authors of SmartSifter in [167] tested their algorithm against the
KDD Cup 1999 [174] dataset, which is extracted from the DARPA 1999
dataset [173] by converting the tcpdump records in connection records
by a traffic reconstruction tool. For each connection, 41 attributes are
recorded (34 of which continuous, and 7 categorical) and a label (which
states whether or not the connection contains an attack).

In the original test three continuous variables (duration, bytes trans-
mitted from source, bytes transmitted from destination), and a categor-
ical one (the service) were used. The categorical variable is divided into
five “cells”: HTTP, SMTP, ftp, ftp data, and others. In our opinion,
this representation is way too reductive, and partly reflects the intrinsic
biases of the DARPA dataset.

It is self evident that our approach is considerably different: we process
packets, and not connections. Since there are a lot less connections
than packets, should the detection rate and false positive rate values be
comparable, a connection-based approach would be much better than a
packet-based one, since there are many more packets than connections.

The authors of SmartSifter claim a 18% detection rate, with a 0.9%

79

4 Network Intrusion Detection Applications

0

10

20

30

40

50

60

70

80

90

100

0,000 0,500 1,000 1,500 2,000

False Positive Rate

D
e

te
c

ti
o

n
 R

a
te

Without

With

Figure 4.13: ROC curves comparing the behavior of SmartSifter with
(lighter) and without (darker) our architecture

false positive rate (6421 connections). Our algorithm can instead reach
a 92% detection rate with a 0.17% false positive rate (2035 packets),
thus demonstrating a highly superior performance.

In Figure 4.13 we further show how our 2-tier architecture benefits
the detection rate by comparing the ROC curves of the SmartSifter
system with and without the payload classification tier by including and
excluding the feature. The results are clearly superior when the first
tier of unsupervised clustering is enabled, proving the usefulness of our
approach.

4.5.3 Comparison with PAYL

PAYL [127] is a prototype of intrusion detection system which uses part
of the payload of packets: in fact, it is the only instance in literature,
besides our own work, where such a concept is applied. PAYL builds a
set of models of payload Mi,j depending on payload size i and destination
port j. The authors show how the frequency distribution of the payload
bytes average varies significantly depending on i, j. We confirmed this
result, and we show evidence of this in Figure 4.14.

Each model Mi,j contains the average frequency, and the standard
deviation, of each of the 256 possible byte values. In the detection phase,
the model M of each packet is computed, and compared against the
model Mi,j created during training using a roughly simplified form of the
Mahalanobis distance (a distance measure for statistical distributions).

In order to avoid an explosion in the number of models, during training

80

4.5 Evaluation of the proposed architecture

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Byte value

A
ve

ra
ge

 F
re

qu
en

cy

(a) M(25, 1460)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Byte Value

A
ve

ra
ge

 F
re

qu
en

cy

(b) M(80, 1460)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Byte Value

A
ve

ra
ge

 F
re

qu
en

cy

(c) M(25, 35)

Figure 4.14: Average of byte values for three different models Mi,j

81

4 Network Intrusion Detection Applications

models that are similar are aggregated (this is very similar to what we
propose in Section 5.1.6 for Markovian models in host based detection).
The merging step aggregates couples of models Mi,j and Mk,j if k ≃ i and
the Manhattan distance between the two models is below a threshold.
The authors also propose a Zipf-like representation of strings called “Z-
string” which is beyond the scope of this section to explore. The same
model was initially proposed in [175], and in [176] is proposed as a
collaborative way of automatically creating worm signatures.

PAYL does not take into account the header informations. It also
ignores the correlation over time in the packet flow. An additional limi-
tation of PAYL is that it needs attack free traffic for training, even if the
authors suggest, without demonstration, that if attacks are in minority
with respect to normal packets.

Analyzing the results in in [127], we can see that PAYL shows its best
results on communications over ports 80 and 21, which are also the ports
that are best characterized in our own experiments on the first tier of our
architecture. Symmetrically, port 25 (which is more difficult also for our
prototype) is not handled very well by PAYL. The best overall results
for PAYL show a detection rate of 58.7%, with a false positive rate that
is between 0.1% and 1%. Our architecture can reach the same detection
rate with a false positive rate below 0.03%, thus an order of magnitude
better than PAYL, or on the other hand reach a 88.9% detection rate
with no more than a 1% rate of false positives.

4.5.4 Resistance to fragmentation and basic evasion
techniques

We also tested, in a very limited way, the resistance of the proposed
architecture against fragmentation. In order to do this, we used Fra-
groute [55] to artificially introduce fragmentation in the DARPA dataset
(in order to create fragmented, but normal packets and connections),
fragmenting the 5% of the TCP traffic.

Then, we used the same tool to introduce fragmentation and evasion
techniques on the attacks. Our results are shown in Table 4.3. Of course,
in such extreme situation, the signal to noise ratio of the algorithm is
worse, but still comparable or better than the results that comparable
systems have on the non-fragmented data of the IDEVAL dataset.

4.6 Questioning the validity of the DARPA dataset

At the beginning of our research we were somehow surprised to find
only one source of test data with full tcpdump payload record available

82

4.6 Questioning the validity of the DARPA dataset

Threshold Detection Rate False Positive Rate

0.05% 28.6% 0.07 %

0.08% 35.8% 0.09%

0.8% 57.1% 0.57%

1.79% 64.28% 1.32%

Table 4.3: Detection rates and false positive rates with high fragmenta-
tion and use of evasion techniques

and a complete description of the traffic and attacks contained: the
dataset created by the Lincoln Laboratory at M.I.T., also known as
“DARPA IDS Evaluation dataset”. These data have been collected by
the IST (Information Systems Technology) group between 1998 and 1999
in order to evaluate detection rates and false positives rates of Intrusion
Detection System. There are two datasets: 1998 and 1999 [173]. The
dataset contains the tcpdump traces generated by a sensor inside the
network and a sensor placed on the boundary, BSM auditing data for
Solaris systems, NT auditing data for Windows systems, directory tree
snapshots of each system, the content of sensitive directories, and inode
data where available.

For privacy reasons, it is very difficult to gather the full payload traces
of real networks. In addition, IDS researchers need clearly labeled data
where attacks are described in full details, something which is usually
impossible to achieve with real-world dumps. Other datasets exist (e.g.
the DEFCON CTF packet capture [177]), but they are not labeled and
do not contain “background traffic”. Thus, most existing researches on
network based IDSs use the DARPA datasets for evaluation. This is a
crucial factor: any bias or error in the DARPA dataset has influenced,
and will influence in the future, the very basic research on this topic.

For privacy reasons, both the background traffic and the attack traffic
are artificially generated. The 1998 dataset is commented and described
by a master’s thesis [178]. The 1999 dataset [172], which we extensively
used, contains the packet dumps (headers and payloads of packets in
tcpdump format) of 5 weeks, over 2 sniffers, in a simulated network. One
of the sniffers is placed between the gateway and 5 “target” machines
(thus emulating an “internal” sniffer), while the other is placed beyond
the gateway, recording packets flowing between the simulated LAN and
the simulated Internet. The dataset also includes the system logs of the
target machines, and BSM audit data, in order to be able to test host
based IDSs. Both attack-free data and clearly labeled attack traces are
present.

83

4 Network Intrusion Detection Applications

It is important to note, however, that these data have been artifi-
cially generated specifically for IDS evaluation. In fact, in [179] there
is a detailed analysis of the shortcomings of the 1999 traffic sample set.
In particular, the author notes that no detail is available on the gen-
eration methods, that there is no evidence that the traffic is actually
realistic, and that spurious packets, so common on the Internet today,
are not taken into account. The same can be said for checksum errors,
fragmented packets, and similars. The simulated network is flat, and
therefore unrealistic.

In [180] it is additionally noticed that the synthetic packets share
strange regularities that are not present in real world traffic:

• SYN packets use always a 4-byte set of options, while in the real
world this value ranges from 0 to 28 bytes.

• The TCP window size varies among seven fixed values ranging
from 512 and 32120.

• There are just 29 distinct IP source addresses, and half of these
account for over 99.9% of the traffic; in real world data, for a
similar network with similar characteristics, over 24.000 unique
addresses were counted.

• TTL and TOS fields are unrealistically similar for most packets.
For instance, in the dataset 9 values of TTL out of 256 are used,
while in real world data 177 different values can be seen; similarly,
just 4 different TOS fields were observed in the dataset, against
over 40.

• There are no packets with checksum errors in the IDEVAL dataset,
while in real data a small but not null percentage of packets ex-
hibits checksum errors; similarly, the dataset lacks fragmented
packets, flag anomalies, etc.

• HTTP requests are all of the form GET url HTTP/1.0 with 6 dif-
ferent keywords and 5 different User-Agent. Real traffic shows dif-
ferent commands, over 70 different keywords and over 800 different
user agents; in real traffic commands and keywords are sometimes
malformed, while in the dataset this is not present. Similar con-
sideration apply to SMTP and SSH traffic.

The authors even propose a simple IDS system based on a single byte
of the IP header (the third byte of the IP address, in particular), which
achieves a 45% Detection Rate with just a bunch of false positives.

84

4.6 Questioning the validity of the DARPA dataset

These characteristics make it difficult to understand whether IDSs
tested and developed on DARPA traffic are capable of detecting true
anomalies, or they are just capable of detecting the irregularities in the
synthetic DARPA traffic. For instance, attacks back, dosnuke, neptune,
neptbus, netcat, ntinfoscan and quaeso can be easily spotted, even by
human eye, because they use TTL values that never appear into the
training set. SMTP attacks are recognizable by the fact that they do
not begin with a regular HELO o EHLO command; most attacks come from
IP addresses that are not present in the training files; and so on.

For partially obviating these problems, we excluded the TTL and
Window Size fields from our test. But evidently, this isn’t enough. Thus,
we positively validated our results using also smaller dumps collected
and generated on our own internal network, as well as attacks generated
with the Metasploit framework. These tests obviously lack repeatability,
but this problem is shared by all the current researches on intrusion
detection.

85

5 Host Based Intrusion Detection
Applications

5.1 A Framework for Behavioral Detection

5.1.1 Introduction to Behavior Detection problems

In [181] we proposed to consider anomaly based intrusion detection in the
more general frame of behavior detection problems. This type of prob-
lems has been approached in many different fields: psychology, ethology,
sociology. Most of the techniques applied in these areas are of no imme-
diate use to us, since they are not prone to be translated into algorithms.
However, some useful hints can be drawn forth, in particular by analyz-
ing the quantitative methods of ethology and behavioral sciences [182].

In order to understand the problem and to transfer knowledge between
these different fields, we must analyze parallel definitions of concepts
we will be dealing with. The first term is “behavior”, which ethology
describes as the stable, coordinated and observable set of reactions an
animal shows to some kinds of stimulations, either inner stimulations (or
motivations) or outer stimulations (or stimuli). The distinction between
“stimuli” and “motivations” is as old as ethology itself, being already
present in Lorenz’s work [183].

Our definition of “user behavior” is quite different. We could define it
as the “coordinated, observable set of actions a user takes on a computer
system in order to accomplish some task”. Depending on the observa-
tion point we assume, we can give different definition of actions, but
for the scope of this introductory reasoning we will define them as the
commands, the data communications and the inputs that the user ex-
changes with the system. We wish to make clear that our effort is not
focused on the behavior of the computer system (which is by definition
entirely predictable) but on the behavior of the user, which has relevant
intentional components.

We will also make use of the concept of “typical behavior”, which
quantitative ethology would describe as the “most likely” one. In our
definition, this behavior is the “normal” user behavior, as opposed to an

87

5 Host Based Intrusion Detection Applications

“atypical” behavior which is not, however, always devious or dangerous.

5.1.2 Motivations for action and action selection

This consideration brings us to the point of analyzing the motivations of
behavior. We are interested in detecting any anomalous behavior which
is motivated by the desire to break the security policy of the system.
Anomalous behavior with no devious motivation is not a problem by
itself; on the other hand perfectly normal, inconspicuous network traffic,
motivated by a devious goal, should in some way be detected by a perfect
intrusion detection system.

Even if terminology varies from school to school in behavioral sci-
ences, we can recognize three broad levels of increasing complexity in
the analysis of behavior: reflex behavior (sensorial stimuli and innate
reactions), instinctual behavior (genetically evolved, innate behavior of
a species), and finally intentional behavior, with actions that an animal
begins autonomously to reach its own goals.

Clearly, when dealing with computer misuse, we are mostly dealing
with intentional behavior, and we need to define what motivates an
action. The concept of motivation is crucial to ethology, and it has been
a theme of a number of philosophical researches as well. Without getting
deeply into the philosophical debate, we can define motivations as the
dynamic factors of behaviors, which trigger actions from an organism
and direct it towards a goal. We will try to recognize which motivations
are behind a particular behavior of a user.

The problem of understanding how, or why, an animal comes to per-
form certain activities and not others, mixing all these sometimes con-
flicting inputs, is known as the action selection problem, and has been
studied for a very long time [184]. In computer science, this problem has
been widely studied for designing rational agents in the AI field. Com-
putational models have been developed for action selection, often jointly
with observations drawn from ethologic studies, for example to develop
the so-called animats [185]. However, it is important to remember that
there’s no proof that an arbitration mechanism for action selection is
present in real animals, and some work demonstrates that it’s not nec-
essary [186]. Other works show that behavior is not simply a product of
the “state” of the agent, but is instead a joint product of the agent, the
environment surrounding it and the observer, who is giving a particular
meaning to the actions he perceives in the agent.

Our models to infer the motivations of a particular sequence of ac-
tion are based on the supposition that there is actually a meaning to
be discovered in that sequence. While this is an acceptable premise for

88

5.1 A Framework for Behavioral Detection

intrusion detection (user actions have almost always a rational explana-
tion), it may be a radically wrong approach for ethology. We need to
take into account this difference while trying to adapt ethological and
behavioral models to IDSs.

5.1.3 Fixed action patterns, modal action patterns, and
ethograms

Closely associated with these concepts are patterns, elements shared by
many slightly different behaviors, which are used to classify them. The
concept of “behavioral pattern” is widely used in ethology.

Ethologists typically define as Fixed Action Patterns (FAP) the atomic
units of instinctual behavior. FAPs have some well defined characteris-
tics: they are mechanic; they are self-similar (stereotyped) in the same
individual and across a species, and they are extensively present; they
usually accomplish some objective. More importantly, they are atomic:
once they begin, they are usually completed by the animal, and if the
animal is interrupted, they are aborted.

A FAP must also be independent from (not correlated with) other
behaviors or situations, except at most one, called a “releasor”, which
activates the FAP through a filter-trigger mechanism, called Innate Re-
lease Mechanism (IRM). The IRM can be purely interior, with no exter-
nal observable input (emitted behavior), or it can be external (elicited
behavior). In the latter case, sometimes the strength of the stimulus
results in a stronger or weaker performance of the FAP (response to
supernormal stimulus). In other cases, there is no such relation.

In [187], the whole concept of FAPs and IRMs is examined in detail.
The author criticizes the rigid set of criteria defining a FAP, in particular
the fact that the IRM must be different for each FAP; the fact that the
IRM has no further effect on the FAP once it has been activated; and the
fact that components of the FAP must fall into a strict order. Many be-
haviors do not fall into such criteria. Barlow proposes then to introduce
MAPs, or Modal Action Patterns, action patterns with both fixed and
variable parts, which can occur in a different order and can be modu-
lated during their execution. Barlow suggests that the environment can
modulate even the most stereotyped behavior. His definition of MAP
is a “spatio-temporal pattern of coordinated movement that clusters
around some mode making it recognizable as a distinct behavior pat-
tern”. Unfortunately, the flexibility of a MAP is difficult to implement
in a computer-based model of behavior.

A subset of FAPs, called “displays”, are actually communication mech-
anisms. In an interesting chain of relations, a display can be the releasor

89

5 Host Based Intrusion Detection Applications

of an answer, creating a communication sequence. An interesting charac-
teristic of displays is the principle of antithesis, stating that two displays
with opposite meanings tend to be as different as they can be. This is
not necessarily true in behavior detection problems: for example, ma-
licious computer users will try to hide behind a series of innocent-like
activities.

We must also introduce the concept of an ethogram, which is an at-
tempt to enumerate and describe correctly and completely the possible
behavioral patterns of a species. On the field, an ethologist would ob-
serve the behavior of animals and list the different observed behavioral
patterns in a list, annotated with possible interpretations of their mean-
ing. Afterwards, s/he would observe at fixed interval the animals and
“tick” the appropriate squares in an ethogram, generating a sequence
data on the behavior of the observed animals. A similar discretization
will be used also in our framework.

5.1.4 A methodology for behavioral detection

We will try to exploit the similarities we have found, in order to propose
a framework for studying behavior detection and classification problems.

First of all, we need to specify which kind of displays of behavior we
can detect and build appropriate sensors for detecting them. It is not
difficult to collect and analyze the logs of a workstation, but detecting
the behaviors of users in a virtual classroom environment could be dif-
ficult. For our example architecture we choose to use the interactions
with a terminal. Other likely displays that could be analyzed are the logs
of the interactions between a user and a web application, the sequence
of system calls generated by user processes [188], or the generation of
audit data (using for instance the syslog facilities of UNIX and similar
systems).

As a second step, we must choose an appropriate model for represent-
ing the behavior. We could approach the problem at different levels of
abstraction, making hypotheses on the action selection problem (as seen
in 5.1.2) and analyzing the actual process which generates the behavior.
However, we will use a traditional approach in quantitative behavior
study, trying to model just the sequence of the displays of behavior, in
order to infer various properties about the subject. In order to choose
an appropriate model, we must understand if we want a binary classifi-
cation, or a more complex one with several disjunct classes, or even one
with overlapping categories.

Upon this model we must build an inference meta-model, which can
help us learn actual parameters from observed data in order to tune the

90

5.1 A Framework for Behavioral Detection

model. This is a classical instance of machine learning problem. Finally,
we must set thresholds and logics that help us extract useful information
from the observed behavior. Due to space constraints, we will now focus
our discussion on how to build an appropriate model for representing the
behavior. As a future work we will deal with the other steps required
for building a complete behavior detection system.

5.1.5 Representing behavior: Markov Models

Markov models are widely used in quantitative behavioral sciences to
classify and report observed behaviors. In particular, in ethology simple
Markov Models are built on field observation results. A time domain
process demonstrates a Markov property if the conditional probability
density of the current event, given all present and past events, depends
only on the K most recent events. K is known as the order of the
underlying model. Usually, models of order K = 1 are considered, be-
cause they are simpler to analyze mathematically. Higher-order models
can usually be approximated with first order models, but approaches for
using high-order Markov models in an efficient manner have also been
proposed, even in the intrusion detection field [189].

A first order Markov Model is a finite set of N states S = {s1, s2, . . . sn},
each of which is associated with a (generally multidimensional) proba-
bility distribution. Transitions among the states are governed by a set
of probabilities called transition probabilities ai,j = P{t = k +1, sj | t =
k, si} (whereas in order K models the probability depends on the states
in the K previous steps, generating a K + 1-dimensional array of prob-
abilities). We consider a time-homogeneous model, in which A = ai,j is
time-independent. This type of model is also called “observal” Markov
Model, since the state is directly observable.

In a Hidden Markov Model, in any particular state, an outcome or
observation ok can be generated according to a probability distribution
associated to the state (bj,k = P{ok | sj}), in an alphabet of M possi-
ble observations. These probabilities obviously form a matrix B = bj,k

which we also suppose to be time independent. Only the outcome, and
not the state, is visible to an external observer; therefore states are “hid-
den” from the outside. The definition also implies an assumption which
is probably not true: the output is assumed to be statistically inde-
pendent from the previous outputs. If the observations are continuous,
then a continuous probability density function is used, approximated by
a mixture of Gaussians. However, ethologists discretize animal behavior
using FAPs and MAPs and ethograms, in order to simplify the model.
In our case, user-computer interactions are mostly discrete sequences of

91

5 Host Based Intrusion Detection Applications

events. Obviously, observal Markov models are special cases of HMMs.

In order to use HMMs in behavior detection, we need to solve two
common problems associated with HMMs [190]. The first is the eval-
uation problem, which means, given a sequence of observations and a
model, what is the probability that the observed sequence was gener-
ated by the model. The second is the learning problem: building from
data a model, or a set of models, that properly describe the observed
behavior. A third problem, the so called decoding problem, is not of
particular interest to us.

5.1.6 A Bayesian algorithm for building Markovian models of
behavior

The evaluation problem is trivial to solve in the case of a normal model,
more complex to solve in the case of an HMM: in this case, the naive
approach yield a complexity of NT , where T is the length of the sequence
of observations. The so-called forward algorithm [191] can be used,
which has a complexity of N2T .

The learning problem is more complex, in particular if we do not know
the structure of the model. First of all, we need to choose the order
of the model we will use. Often a first-order approximation is used
for simplicity, but more complex models can be considered. A good
estimate for an HMM can be extracted from data using the criteria
defined in [192]; for normal Markov models, a χ2-test for first against
second order dependency can be used [193], but also an information
criterion such as BIC or MDL can be used.

In order to estimate the correct number of states for an HMM, in [194]
an interesting approach is proposed, by eliminating the time dependency
and constructing a classification by means of clustering of the observa-
tions, considering each state as a generation mechanism.

Once we have chosen the model structure, learning a sequence of T
observations means to find the matrices {A, B} that maximize the prob-
ability of the sequence: maxP [o1o2 . . . oT |A, B]. This is computation-
ally unfeasible, however the Baum-Welch algorithm [195] can give a local
maximum for that function. Another approach to the parameter estima-
tion problem is proposed in [196]. If the model is not hidden, however,
the calculations become simple.

In many earlier proposals for the use of Markovian models in intrusion
detection [103] the authors either build a Markov model for each user
and then try to find out masquerading users (users accessing illicitly
the account of another user); or they build a Markov model for the
generic user and flag as anomalous any user who behaves differently.

92

5.1 A Framework for Behavioral Detection

The first approach brings an explosion of models, lacking generalization
or support for users who are not identified uniquely to the system, while
the second approach ignores the existence of different classes of users on
the system.

In order to account for the existence of different classes of user behav-
iors, we propose the following algorithm, based on a Bayesian approach.
Denoting with M a generic model and with O a sequence of observa-
tions, P (M |O) ∝ P (O|M)P (M). This means that, if we have a set
of I models M1, M2 . . .MI , the most likely model for the sequence of
observations O is given by: maxi P (Mi|O) = maxi P (O|Mi)P (Mi)

We need now to choose an appropriate prior P (Mi) for the models.
Let us suppose that this procedure is iterative, which means that we have
built the existing I models out of K observation sequences O1 . . . OK ,
iteratively associating each sequence with the best-fitting model and
retraining the model with the new observations. This also means that
we need to define a criterion for choosing whether it is appropriate to
associate the new observations Ok with an existing model, or to create
a new model for representing them.

A common decomposition for studying the prior of the model would
be P (Mi) = P (θi|Ms)P (Ms), denoting with P (θi) the probability of
the particular parameter set of Mi given a basic structure Ms and with
P (Ms) the probability of the structure itself. However, this type of
approach leads to very complex calculations.

Using a simpler approach, we could proceed as follows. Let us call Oi

the union of the observation sequences that have generated model Mi.
We can build a non-informative prior criterion such as:

P (Mi) =

(|Oi| + |Ok|
(
∑ |Oi|) + |Ok|

)log(|Ok|)

(5.1)

which penalizes more particular models, favoring more general ones. In-
serting the exponent log(|Ok|) is necessary in order to account for the
fact that different length of observation strings will generate different
orders of magnitude in posterior probability. This generates also a sim-
ple criterion for the creation of new models. In fact, denoting with
MI+1 a new model built on the new observations Ok, we would choose:
maxiP (Mi|Ok) = maxiP (O|Mi)P (Mi) with 1 ≤ i ≤ I + 1, defining:

P (MI+1) =
|Ok|

(
∑ |Oi|) + |Ok|

In this way, the prior biases the probability towards more general models
instead of more fitting but less general ones, averaging out the fact

93

5 Host Based Intrusion Detection Applications

that less general models tend to have an higher posterior probability
P (Mi|Ok). Once we have selected which model the k-th sequence Ok

will be associated with, we re-train the model including in training data
the new sequence.

Afterwards, we may optionally include a merging step, which means
we will try to find couples of models Mi, Mj such that, denoting with
Mi,j the “merged” model and with Oi and Oj the observations associated
with Mi and MJ :

P (Oi ∪ Oj |Mi,j)P (Mi,j) > P (Oi|Mi)P (Mi)

P (Oi ∪ Oj |Mi,j)P (Mi,j) > P (Oj |Mj)P (Mj)

In this case, a suitable criterion for selecting models to merge and for
merging them must be also researched. There are some examples in
literature of criteria for measuring a distance between two Markov mod-
els, for instance in [197] the following (asymmetric) distance is proposed:
D(Mi, Mj) = 1/T [logP (O(i)|Mi) − logP (O(i)|Mj)], where O(i) is a se-
quence of observations generated by model Mi. Criteria for merging
HMM models can be found in [198] [199], where they are proposed as a
suitable way to induce the models by aggregation.

If we wish to incorporate the insights from section 5.1.3 on the pres-
ence of FAPs and MAPs in behavior, we will need to use higher order
models, because we need to express the probability on the base of a his-
tory. A suggestion that we may borrow from Barlow’s studies on modal
components of behavior, however, is that we may also want to detect
clusters of states in the Markov chain that exhibit the following proper-
ties: they have “similar” outgoing transition probabilities and “similar”
symbol emission probabilities (if we are dealing with an HMM). These
states can be collapsed together in a single state, with simple probability
calculations that we omit. This method is also applied in quantitative
behavioral science, see [200].

5.1.7 A proof-of-concept behavior detector

For proof-of-concept testing of our framework, we acquired test data
from a limited number of users of two different terminal systems, with 10
users on a system and 9 on the other, and 4 months of data. We prepared
the data by discarding command options and encoding each different
command with a number. In the first system, for example, on 2717
interactions, 150 unique commands were used. However, as we can see in
Figure 5.1, a significant fraction of the interactions consists of a limited
subset of frequently used commands, so we can set a minimum threshold
below which we will group all the commands together as “other”.

94

5.1 A Framework for Behavioral Detection

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of commands

R
at

io
 o

n
to

ta
l

Figure 5.1: Cumulative distribution of commands

0 20 40 60 80 100 120
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Model Order

V
al

ue
 o

f C
rit

er
io

n

BIC
MDL

Figure 5.2: Information criteria: MDL and BIC

95

5 Host Based Intrusion Detection Applications

Commands Our algorithm Naive Markov

Fitting Detection Detection

60 90.0 95.9 90.0
40 89.2 95.6 87.8
30 87.8 94.8 86.3
20 84.8 92.9 78.9
10 67.4 81.1 65.6
8 61.1 78.5 59.3
6 38.1 63.3 51.5
4 20.4 55.9 50.7

Table 5.1: Performance of our algorithm vs. naive application of Markov
Models

In order to estimate the optimal order for the model, we used both
the BIC and MDL criteria, and both agree on order k = 4 as being
the optimal value. However, as a first approximation we will use a
first-order model to fit the observations (approximation supported by
the steep descent in criteria curves, which can be observed in Figure
5.2). Also, since the observations are finite in number, we use a normal
Markov chain and not an HMM, to fit it.

We trained a set of Markov models following the basic algorithm out-
lined above. We experimented with various combinations of thresholds
and parameters: we show the results in Table 5.1, compared with a naive
application of Markov models (by pre-labeling the traces and building
a transition matrix for each user, or class of user). For our models,
we show also a measure of the overfitting of the model classes on the
training sequences (the higher the fitting, the lower the generalization
capacity of the algorithm). Creating Markov models with a high num-
ber of nodes increases both detection rate (because users are identified
by relatively uncommon commands they perform) and overfitting. Us-
ing only 6 types of commands, we obtain a much better generalization
and still a 63.3% detection rate. The rate may seem overall low, but
it is still much higher than the detection rate of a naive application of
Markov models. The computation time for building the model is quite
higher than the naive one (about 6 times higher), but still in the order
of seconds. At runtime, there is no difference in complexity between our
model and a naive one.

96

5.2 System Call Argument Analysis: the LibAnomaly framework

5.2 System Call Argument Analysis: the
LibAnomaly framework

5.2.1 LibAnomaly and SyscallAnomaly: an introduction

We decided to begin our work on system call anomaly detection by
analyzing the LibAnomaly project.

LibAnomaly is a tool created by the Reliable Software Group of the
University of California, Santa Barbara [107]. LibAnomaly implements
a framework to build anomaly detection systems. The authors used
LibAnomaly’s API to implement a demo system called SyscallAnoma-
ly, which can detect anomalies by analyzing system call arguments.
SyscallAnomaly works by analyzing either Solaris or Linux syscall traces
(respectively in BSM or Snare formats).

Both projects are developed in C++ and available under a GPL li-
cense. No exhaustive manual or documentation of the projects exist,
besides what is present in scientific articles. Thus, in order to study
SysCallAnomaly and propose improvements and alternative implemen-
tations, we used the following process:

1. We studied the theoretical foundations described in [107].

2. We recreated the test environment and results claimed by the au-
thors.

3. We analyzed thoroughly the source code of the applications in
order to discover implementation details.

On the base of this process, we proposed an alternative system, which
implements some of the ideas of SyscallAnomaly along with Markovian
based modeling, clustering and behavior identification, and which out-
performs the original application, as we will show in the following.

5.2.2 LibAnomaly models: design and implementation

Generic structure of a model

LibAnomaly implements a set of anomaly models. Any of these models
implements four methods:

1. insert item(): adds a new element in the training set of the
model;

2. switch mode(): terminates the learning phase, synthesizes the
model from the training set, and begins the threshold tuning phase;

97

5 Host Based Intrusion Detection Applications

Figure 5.3: Class tree for LibAnomaly models

3. check item(): gives the probability that a new item belongs to
the model, i.e. the likelihood rating, for the detection phase;

4. get confidence(): gives the confidence rating, i.e. how reliable
is the model in describing normality.

LibAnomaly implements the abstract class Pdf function (see Figure
5.3) to implement a generic probability distribution function:

• Histogram: a discrete probability distribution;

• NormalPdf: a normal probability distribution;

• LognormalPdf: a log-normal probability distribution;

• LinearRegression: a linear interpolation between input data.

String Length Model

The string length model computes, for the strings seen in the training
phase, the campionary average and variance µ and σ2. In the detection
phase, let l be the length of the observed string. The model returns 1
if l < µ, or σ2

(l−µ)2
otherwise. This value measures the likelihood of the

input string length with respect to the values observed in training.

98

5.2 System Call Argument Analysis: the LibAnomaly framework

Character Distribution Model

The model uses the class Histogram, which implements a discrete prob-
ability distribution. During training, each string is considered as a set of
characters, which are inserted into an histogram, in decreasing order of
occurrence. The actual value of the character is ignored. So the strings
“a good example string” would have the following representation: 2 2
2 2 1 1 1 1 1 1 1 1 1 1 (because there are 4 letters that are repeated
twice, and 10 that appear a single time). During the learning phase, a
compact representation of the average and the variance of each position
of the histogram is computed. For detection a χ2 Pearson test returns
the likelihood that the observed string histogram belongs to the learned
model.

Structural Inference Model

The structural inference model learns the structure of strings. Firstly,
strings are simplified using the following rules:

[A − Z] → A
[a − z] → a
[0 − 9] → 0

In other words, uppercase characters, lowercase characters, and num-
bers, are lumped together. Other characters instead are kept. Here are
two examples of this conversion:

/usr/lib/libc.so → /aaa/aaa/aaaa.aa
/etc/X11/XF86Config → /aaa/A00/AA00Aaaaaa

As a final preprocessing step, multiple occurrences of the same character
are lumped together, as follows:

/aaa/aaa/aaaa.aa → /a/a/a.a
/aaa/A00/AA00Aaaaaa → /a/A0/A0Aa

Strings that after this compression are still longer than 40 characters are
ignored by the model, perhaps for simplification.

A probabilistic grammar of the input strings is then built, using a Hid-
den Markov Model (HMM), and implementing the algorithms and the
optimizations described in [199, 198, 201] which we already commented
in Section 5.1.6. However, as we have shown, this type of Bayesian merg-
ing is heavily dependent on the choice of the prior of the Bayesian model,
and this choice is not well documented in the literature of LibAnomaly.

99

5 Host Based Intrusion Detection Applications

Curiously, the probability values associated with the Markov model
are ignored in the detection phase. The input string is preprocessed as
outlined above and compared with the HMM. If the HMM can generate
the string (i.e. the generation probability has a value greater than 0) a
probability of 1 is returned, otherwise 0 is returned.

This awkward choice is probably explained by our observation over
Equation 5.1 in Section 5.1.6, where we noticed that the length of ob-
servation string introduces a difference in probability which must be ac-
counted for, in order not to penalize longer observation against shorter
ones.

Token Search Model

The Token Search Model, during training, uses a statistical test to deter-
mine whether or not an input field contains a token, that is, a finite series
of values. The test works in the following way: let I be the vector of
inputs. Two vectors are created, A and B: at step n, A[n] = A[n−1]+1
(so A contains the first n natural numbers), while B[n] = B[n− 1]+1 if
I[n−1] = I[n], or B[n] = B[n−1]−1 otherwise. A Kolgomorov-Smirnov
non parametric test is then used to establish whether or not the vectors
are correlated. If they are, the field probably contains a set of tokens,
and the set of values observed during training is stored.

During detection, if the field has been flagged as a token, the input
is compared against the stored values list. If it matches a former input,
the model returns 1, else it returns 0.

5.2.3 SyscallAnomaly: design and implementation

SyscallAnomaly creates a profile of system calls for each different appli-
cation. The input of SyscallAnomaly, for each instance of execution of
an application, is a sequence of system calls S = {s1, s2, s3, . . .}, logged
by operating system. Each system call si is composed by a list of argu-
ments, a type and a return value.

SyscallAnomaly generates a profile for each system call type (e.g.
read, write, exec, . . .), for each application (e.g. sendmail, telnetd,
. . .). It does not take into account the sequence with which the system
calls happen. The profile strives to capture the normal behavior of a
program, by characterizing the normal arguments of each system call
type inside that program.

These normal values are captured by the means of a set of mod-
els. Models are trained during a learning phase, and during the run-
time/recognition phase they return the likelihood of a particular value

100

5.2 System Call Argument Analysis: the LibAnomaly framework

of an argument of a system call, based on previous observations of that
system call in the context of the same application during training.

Each model, on each argument of the system call, operates indepen-
dently. The probabilities are then aggregated to compute the total prob-
ability value of a system call. If this value is lower than a threshold, the
call is flagged as anomalous. The threshold is learned by computing the
maximum anomaly value over the whole training set, and incrementing
this value of a user-defined percentage (a sensitivity threshold for the
system).

We can see that SyscallAnomaly bases its structure on two great as-
sumptions

• Firstly, that the attack actually appears and has some effect on
system calls arguments, rather than on their sequence. Attacks
that do not alter the content of system calls but just their sequence
are undetectable by such a system.

• A second assumption is that anomalous system call arguments
are different than training values more than the training values
are different among themselves. Thus, the ability of detecting
anomalies, even if the first assumption is satisfied, depends on the
efficacy of at least a few of the various single models built upon
arguments to capture normality and separate outliers (separately,
since no correlation among models is analyzed).

SyscallAnomaly receives as an input a streams of events, correspond-
ing to system call invocations system-wide. Each event carries the fol-
lowing informations:

• The invoking process and the program path,

• The invoked system call,

• A timestamp,

• The return value,

• The argument list.

For each event, if a profile for the same syscall in the context of the
same program exists, the new arguments are added to that profile, oth-
erwise a new profile is initialized. Not all the system calls are modeled,
though. Out of more than 280 syscalls implemented in Linux, only 22
are considered. The authors probably chose only the calls that are in-
voked enough times to generate significant profiles, yet are sufficiently
characterized to generate meaningful models.

101

5 Host Based Intrusion Detection Applications

The arguments are modeled according to their expected content. If
the expected content is a file system path, the String Length, Charac-
ter Distribution and Structural Inference models are used (collectively
named “PathFactory”). If the expected content is a token, i.e. a flag,
an opening mode, a UID or GID, and so on, the Token Search model
is used instead (“FlagFactory”). A list of all the modeled system calls,
along with the type of modeled values, is reported in Table 5.2.

During the detection phase, the probability value for each call is com-
puted by computing the probability values for each of the model of each
argument and then aggregating these models using the following equa-
tion:

∑i
∀ model confidencei ∗ log(probabilityi)

#ofmodels
(5.2)

5.2.4 Testing SyscallAnomaly on the IDEVAL dataset

The IDEVAL dataset, which we already described in 4.6, contains also
host based auditing data in BSM format. However, it must be noted
that many attacks (the ones against network services as well as the
policy violation events) are not directly detectable through system call
analysis. The most interesting attacks for testing SyscallAnomaly are
the ones in which an attacker exploits a vulnerability in a local or remote
service to allow an intruder to obtain or escalate privileges.

In particular, we use the BSM audit logs from a system named pascal.

eyrie.af.mil, which runs a Solaris 2.5.1 operating system. The dataset
contains 25 buffer overflow attacks against 4 different programs: eject,
fdformat, ffbconfig e ps.

We used data from weeks 1 and 3 for training, and data from weeks
4 and 5 for testing purposes.

In addition to the four programs named above, we ran SyscallAnomaly
also on three other programs, namely ftpd, sendmail and telnetd,
which are not subject to attacks, in order to better evaluate the false
positive rate of the system. In Table 5.3 we compare our results with
the version of SyscallAnomaly available on the Internet [202] with the
results reported in [107]

As can be seen, our results differ from the ones reported in [107], but
the discrepancy can be explained by a number of factors:

• The version of SyscallAnomaly and LibAnomaly available online
could be different than the one used for the published tests.

• A number of parameters can be tuned in SyscallAnomaly, and a
different tuning could produce the discrepancy.

102

5.2 System Call Argument Analysis: the LibAnomaly framework

Syscall name Model applied to each argument

open pathname → PathFactory
flags → FlagFactory
mode → none

execve filename → FlagFactory
argv → PathFactory

setuid uid → FlagFactory
setgid

setreuid ruid → FlagFactory
setregid euid → FlagFactory

setresuid ruid → FlagFactory
setresgid euid → FlagFactory

suid → FlagFactory

rename oldpath → PathFactory
newpath → PathFactory

symlink oldpath → PathFactory
link newpath → PathFactory

mount source → PathFactory
target → PathFactory
flags → FlagFactory

umount target → PathFactory
flags → FlagFactory

exit status → FlagFactory

chown path → FlagFactory
lchown owner → FlagFactory

group → FlagFactory

chmod path → PathFactory
mode → FlagFactory

creat pathname → PathFactory
mode → FlagFactory

mkdir pathname → PathFactory
mode → FlagFactory

mknode pathname → PathFactory
mode → FlagFactory
dev → FlagFactory

unlink pathname → PathFactory

rmdir pathname → PathFactory

Table 5.2: Recorded syscalls and applied models in SyscallAnomaly

103

5 Host Based Intrusion Detection Applications

Program False Positives
Reported in [107] Our experiment (number of syscalls)

fdformat 0 1 (4)
eject 0 1 (6)
ps 0 2 (10)
ftpd 14 2 (45)
telnetd 17 2 (198)
sendmail 8 4 (97)

Table 5.3: Experimental Evaluation of SyscallAnomaly on the IDEVAL
dataset

• Part of the data in the IDEVAL dataset under consideration are
corrupted or malformed.

• In [107] it is unclear if the number of false positives is based on
the number of executions erroneously flagged as anomalous, or on
the number of anomalous syscalls detected..

These discrepancies make a direct comparison difficult, but our num-
bers confirm that Syscall Anomaly performs well overall as a detector.
However, the false positives and the anomalies are interesting to study,
in order to better understand how and where SyscallAnomaly fails.

5.2.5 A detailed analysis of experiments and false positives

fdformat

fdformat is a simple program which is used to format removable me-
dia on UNIX-like systems. Normally, it has a very simple and pre-
dictable execution flow (and thus should be very well characterized):
device mm@0:zero is opened, dynamic libraries are loaded, and finally
the device vol@0:volctl is accessed. A typical execution instance has
the following behavior:

execve: /usr/bin/fdformat, fdformat

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libvolmgt.so.1, -rwxr-xr-x

open: /usr/lib/libintl.so.1, -rwxr-xr-x

open: /usr/lib/libc.so.1, -rwxr-xr-x

open: /usr/lib/libadm.so.1, -rwxr-xr-x

open: /usr/lib/libw.so.1, -rwxr-xr-x

104

5.2 System Call Argument Analysis: the LibAnomaly framework

System Call execve

Argument 1 /usr/bin/fdformat

Argument 2 fdformat\0x20\0x20\0x20\0x20[...]
Model Probability (Confidence)

String Length 10−6 (0)
Character Distribution 0.005 (0.995)
Structural Inference 10−6 (0.025)
Token Search 0.999999 (0)

Tot. Score (Thresh.) 1.4043 (0.00137156)

Table 5.4: True positive on fdformat: buffer overflow attack instance

open: /usr/lib/libdl.so.1, -rwxr-xr-x

open: /usr/lib/libelf.so.1, -rwxr-xr-x

open: /usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

exit: 0

The only attack in the dataset against fdformat is a buffer overflow
with command execution (see Table 5.4). The exploit is visible in the
execve system call, since the buffer overflow is exploited from the com-
mand line. Many of the models in SyscallAnomaly are able to detect
this problem: the character distribution model, for instance, works ad-
mirably well. The anomaly value turns out to be 1.4043, much higher
than the threshold (0.0013).

The interesting thing is that the string length and structural inference
models, which should flag immediately this anomaly, work as expected,
but are mostly ignored since their confidence value is too low.

Another alert happens in the opening of a localization file (Table 5.5),
which triggers the string length model, creates an anomalous distribution
of characters, and moreover the presence of numbers, underscores and
capitals creates a structure that is flagged as anomalous by the structural
inference model. The anomaly in the token search model is due to
the fact that the open mode (-r-xr-xr-x) is not present in any of the
training files.

Concluding, this is a very simple attack, which is detected with no
effort; the detection of the opening of the localization file (which is a
consequence of the attack) is also counted as a true positive, but is more

105

5 Host Based Intrusion Detection Applications

System Call open

Argument 1 /usr/lib/locale/iso 8859 1/[...]

Argument 2 -r-xr-xr-x

Model Probability (Confidence)

String Length 0.0096 (0.005)
Character Distribution 0.005 (0.995)
Structural Inference 10−6 (0.986)
Token Search 10−6 (1)

Tot. Score (Thresh.) 8.186 (1.454)

Table 5.5: True positive on fdformat: opening localization file

of a random side effect.

eject

eject is a similarly simple program, used to eject media: dynamic li-
braries are loaded, and the device vol@0:volctl is accessed; finally, the
device unnamed floppy is accessed.

execve: /usr/bin/eject, eject

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libvolmgt.so.1, -rwxr-xr-x

open: /usr/lib/libadm.so.1, -rwxr-xr-x

open: /usr/lib/libintl.so.1, -rwxr-xr-x

open: /usr/lib/libc.so.1, -rwxr-xr-x

open: /usr/lib/libelf.so.1, -rwxr-xr-x

open: /usr/lib/libw.so.1, -rwxr-xr-x

open: /usr/lib/libdl.so.1, -rwxr-xr-x

open: /usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

open: /vol/dev/rdiskette0/unnamed_floppy, crw-rw-rw-

open: /devices/pseudo/vol@0:volctl, crw-rw-rw-

open: /vol/dev/rdiskette0/unnamed_floppy, crw-rw-rw-

open: /vol/dev/rdiskette0/unnamed_floppy, crw-rw-rw-

exit: 0

The attack is fairly similar to the attack on fdformat, and the same
considerations apply. However, in this case a false positive is present
when a removable unit unseen in training (c0t6d0/volume 1) is opened
(see Table 5.7).

106

5.2 System Call Argument Analysis: the LibAnomaly framework

System Call execve

Argument 1 /usr/bin/eject

Argument 2 eject\0x20\0x20\0x20\0x20[...]
Model Probability (Confidence)

String Length 10−6 (0)
Character Distribution 0.005 (0.928)
Structural Inference 10−6 (0.025)
Token Search 0.999999 (0)

Tot. Score (Thresh.) 1.316 (0.0012)

Table 5.6: True positive on eject: buffer overflow on execve

System Call open

Argument 1 /vol/dev/rdiskette0/b9

Argument 2 crw-rw-rw-

Model Probability (Confidence)

String Length 0.667 (0.005)
Character Distribution 0.99 (0.995)
Structural Inference 10−6 (1)
Token Search 0.999 (1)

Tot. Score (Thresh.) 8.186 (1.454)

Table 5.7: False positive on eject: use of a new unit

107

5 Host Based Intrusion Detection Applications

The structural inference model is the culprit of the false alert, since
the name structure is different than the previous one for the presence
of an underscore. As we will see later on in Section 5.2.6, this extreme
brittleness of the transformation and simplification model is a constant
weakness of the structural inference model.

ps

ps is a jack-of-all-trades program to monitor process execution, and as
such is much more articulated in its options and execution flow than
any of the previously analyzed softwares. The sequence of system calls,
however, does not vary dramatically depending on the user specified
options. Besides library loading, the program opens /tmp/ps data and
the files containing process information in /proc.

execve: /usr/bin/ps, ps

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libw.so.1, -rwxr-xr-x

open: /usr/lib/libintl.so.1, -rwxr-xr-x

open: /usr/lib/libc.so.1, -rwxr-xr-x

open: /usr/lib/libdl.so.1, -rwxr-xr-x

open: /usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x

open: /tmp/ps_data, -rw-rw-r--

open: /proc/3345, -rw-------

open: /proc, dr-xr-xr-x

open: /proc/00000, -rw-------

open: /proc/00001, -rw-------

open: /proc/00002, -rw------- [...]

Also in this case, the attack is a buffer overflow on a command-line
parameter. We do not repeat our observations above. In this case,
as was the case for fdformat, a correlated event is also detected, the
opening of file /tmp/foo instead of file /tmp/ps data (see Table 5.8).

Token search model and structural inference model flags an anomaly,
because the opening mode is unseen before, and because the presence
of an underscore in /tmp/ps data makes it structurally different than
/tmp/foo. However, if we modify the exploit to use /tmp/foo data, the
structural inference model goes quiet.

A false positive happens when ps is executed with options Iux, be-
cause as we see in Table 5.9 the structural inference model strongly
believes this to be an attack. Another false positive happens when a
zone file is opened, because during training no files in zoneinfo were
opened (details in Table 5.10).

108

5.2 System Call Argument Analysis: the LibAnomaly framework

System Call open

Argument 1 /tmp/foo

Argument 2 -rw-r--r--

Model Probability (Confidence)

String Length 0.17 (0.005)
Character Distribution 0.9 (0.995)
Structural Inference 10−6 (1)
Token Search 10−6 (1)

Tot. Score (Thresh.) 6.935 (1.457)

Table 5.8: True positive on ps: opening /tmp/foo

System Call execve

Argument 1 /usr/bin/ps

Argument 2 ps -Iux

Model Probability (Confidence)

String Length 0.0687 (0.005)
Character Distribution 0.95 (0.995)
Structural Inference 10−6 (0.41)
Token Search 0.999 (1)

Tot. Score (Thresh.) 1.434 (0.017)

Similar events ps -aKx, ps -aNx, ps -a[x)

Table 5.9: False positive on ps: different command line arguments

System Call open

Argument 1 /usr/share/lib/zoneinfo/US/Eastern

Argument 2 -rw-r--r--

Model Probability (Confidence)

String Length 0.0063 (0.005)
Character Distribution 0.005 (0.995)
Structural Inference 10−6 (1)
Token Search 10−6 (1)

Tot. Score (Thresh.) 8.232 (1.457)

Table 5.10: False positive on ps: zone file opening

109

5 Host Based Intrusion Detection Applications

System Call open

Argument 1 /export/home/ftp/dev/tcp

Argument 2 crw-r--r--

Model Probability (Confidence)

String Length 0.063 (0.005)
Character Distribution 0.95 (0.995)
Structural Inference 0.999 (1)
Token Search 10−6 (1)

Tot. Score (Thresh.) 3.467 (1.463)

Table 5.11: False positive on ftpd: opening a file never opened before

Concluding, also in this case the detection of the opening of the /tmp/
foo data file is more of a random side effect than a detection, and in
fact the model which correctly identifies it then creates false positives
for many other instances.

ftpd

in.ftpd is a common FTP server, and as such is subject to a variety of
commands. However, also because of the shortcomings of the IDEVAL
dataset (see Section 5.4), the system call flow is fairly regular. After
access to libraries and configuration files, the logon events are recorded
into system log files. A vfork call is then executed to create a child
process for actually serving the client requests

execve: /usr/sbin/in.ftpd, in.ftpd

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libsocket.so.1, -rwxr-xr-x [...]

open: /etc/shells, -rw-r--r--

open: /etc/ftpusers, ----------

open: /etc/nsswitch.conf, -rw-r--r-- [...]

open: /var/adm/wtmp, -rw-rw-rw-

open: /var/adm/wtmpx, -rw-rw-rw- [...]

vfork:

open: /devices/pseudo/clone@0:tcp, crw-rw-rw-

open: /export/home/mistyd/NewProjects/Working

/Linux/Sparc/., drwxrwxr-x [...]

exit: 0

110

5.2 System Call Argument Analysis: the LibAnomaly framework

System Call open

Argument 1 /etc/shadow

Argument 2 -rwxrwxrw-

Model Probability (Confidence)

String Length 0.155 (0.005)
Character Distribution 0.975 (0.995)
Structural Inference 0.999 (1)
Token Search 10−6 (1)

Tot. Score (Thresh.) 3.46 (1.46)

Table 5.12: False positive ftpd: opening /etc/shadow with a mode dif-
ferent than usual

False positive: opening /etc/shadow with an unforeseen mode In
this case, the false positives mostly happen because of the opening of files
never accessed during training (e.g. the device /export/home/ftp/dev/tcp,
as shown in Table 5.11), or with unusual modes (as happens with /etc/shadow

in Table 5.12). In this case, the token search model is one of the culprits.

telnetd

in.telnetd has a very simple execution flow: after shared libraries have
been opened, two fork calls are executed, the user logon is logged, and
devices clone@0:logindmux and pts@0:0 are opened.

execve: /usr/sbin/in.telnetd, in.telnetd

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libsocket.so.1, -rwxr-xr-x [...]

open: /devices/pseudo/clone@0:ptmx, -rw-r--r--

fork:

open: /devices/pseudo/pts@0:0, -rw-r--r--

open: /etc/netconfig, -rw-r--r--

open: /etc/.name_service_door, sr--r--r--

open: /devices/pseudo/clone@0:logindmux, -rw-r--r--

open: /devices/pseudo/clone@0:logindmux, crw-------

fork:

open: /devices/pseudo/pts@0:0, crw--w----

open: /var/adm/utmpx, ---------- [...]

exit: 0

A false positive promptly happens when syslog.pid file is opened,
something which didn’t happen during training (see Table 5.13). The

111

5 Host Based Intrusion Detection Applications

System Call open

Argument 1 /etc/syslog.pid

Argument 2 -rw-r--r--

Model Probability (Confidence)

String Length 0.05 (0.005)
Character Distribution 0.95 (0.995)
Structural Inference 10−6 (1)
Token Search 0.999 (1)

Tot. Score (Thresh.) 3.46 (0.63)

Table 5.13: False positive on telnetd: opening syslog.pid

only model flagging an anomaly is the HMM of structural inference, be-
cause no files opened during training had a filename extension of any
type. Once more, the robustness of structural inference is disputable.

sendmail

sendmail is a very complex program, with complex execution flows that
include opening libraries and configuration files, accessing the mail queue
(/var/spool/mqueue), transmitting data through the network and/or
saving mails on disk. Temporary files are used, and the setuid call
is also used, with an argument set to the recipient of the message (for
delivery to local users).

execve: /usr/lib/sendmail, /usr/lib/sendmail

-oi lizoletd@alpha.apple.edu

open: /devices/pseudo/mm@0:zero, crw-rw-rw-

open: /usr/lib/libkstat.so.1, -rwxr-xr-x

open: /usr/lib/libresolv.so.1, -rwxr-xr-x

open: /usr/lib/libsocket.so.1, -rwxr-xr-x [...]

open: /etc/nsswitch.conf, -rw-r--r--

open: /etc/mail/sendmailvars, ----------

open: /etc/mail/sendmailvars, ----------

open: /etc/mail/sendmail.cf, -rw-r--r--

open: /etc/mail/sendmailvars, ----------

open: /etc/mnttab, -rw-r--r--

open: /etc/mail/aliases.pag, -rw-r--r-- [...]

open: /var/spool/mqueue/qfIAA00307, -rw-------

open: /var/spool/mqueue/xfIAA00307, -rw-r--r--

open: /etc/ttysrch, -rw-r--r--

112

5.2 System Call Argument Analysis: the LibAnomaly framework

System Call setuid

Argument 1 2133

Model Probability (Confidence)

Token Search 10−6 (1)

Tot. Score (Thresh.) 13.81 (10−6)

Table 5.14: False positive on sendmail: user seen for the first time

System Call unlink

Argument 1 /var/mail/emonca000Sh

Model Probability (Confidence)

String Length 4 ∗ 10−5 (0)
Character Distribution 0.5 (0.995)
Structural Inference 10−6 (0.25)

Tot. Score (Thresh.) 1.381 (0.03)

Correlated events opened emonc, unlinked emonc.lock

Table 5.15: False positive on sendmail: operations in /var/mail

open: /var/adm/utmpx, ----------

open: /var/adm/utmpx, -rw-rw-rw-

open: /var/adm/utmp, -rw-rw-rw-

open: /devices/pseudo/clone@0:udp, crw-rw-rw-

open: /etc/resolv.conf, -rw-r--r--

open: /devices/pseudo/clone@0:udp, crw-rw-rw-

open: /devices/pseudo/clone@0:udp, crw-rw-rw- [...]

open: /etc/mail/sendmail.st, -rw-rw-r--

unlink: /var/spool/mqueue/xfIAA00307

fork:

open: /devices/pseudo/mm@0:null, crw-rw-rw-

open: /devices/pseudo/mm@0:null, crw-rw-rw-

open: /var/spool/mqueue/qfIAA00307, -rw-------

setuid: 2067

exit: 0

A false positive happens for instance when sendmail uses UID 2133
(Table 5.14) to deliver a message. In training that particular UID was
not used, so the model flags it as anomalous. Since this can happen
in the normal behavior of the system, it is evidently a generic problem
with the modeling of UIDs as it is done in LibAnomaly.

113

5 Host Based Intrusion Detection Applications

Operations in /var/mail (see Table 5.15) are flagged as anomalous
because the filenames are of the type /var/mail/emonca000Sh and thus
the alternance of lower and upper case characters and numbers easily
triggers the structural inference model.

5.2.6 A theoretical critique to SyscallAnomaly

In the previous section we outlined different cases of failure of SyscallA-
nomaly. But what are the underlying reasons for these failures? In this
section we analyze all the proposed models and their weaknesses, as we
found them during our analysis

Structural inference model flaws

This model, as described in 5.2.2 is probably the weakest overall. Firstly,
it is too sensitive against non alphanumeric characters. Since they are
not altered or compressed, the model reacts strongly against slight mod-
ifications that involve these characters. This becomes visible when li-
braries with variable names are opened, as it is evident in the false
positives generated on the ps program (see Section 5.2.5).

On the other hand, the compressions and simplifications introduced
are excessive, and cancel out any interesting feature: for instance, the
strings /tmp/tempfilename and /etc/shadow are indistinguishable by
the model.

A very surprising thing, as we already noticed, is the choice of ignoring
the probability values in the HMM, turning it into a binary value (0 if
the string cannot be generated, 1 otherwise). This assumes an excessive
weight in the total probability value, easily causing a false alarm.

In order to test our hypothesis, we excluded this model from the
SyscallAnomaly program. As can be seen in Table 5.16 the detection
rate is unchanged, while the false positive rate is strongly diminished
(because many of the errors outlined above disappear).

Particularly striking is the case of ls, which is an attack-free program,
where excluding the structural inference model instantly makes all the
false positives disappear. Therefore, the Structural Inference model is
not contributing to detection, but instead it is causing a growth in false
positive rate.

Character Distribution Model

This model is much more reliable than the former one, and contributes
very well to detection. However, the model does not care about which
particular character has which distribution, which can lead to attack

114

5.3 Beyond SyscallAnomaly: our proposal

Program False Positives (Syscalls)
With the HMM Without the HMM

fdformat 1 (4) 1(4)
eject 1 (6) 1 (3)
ps 2 (10) 1 (6)
ftpd 2 (45) 2 (45)
telnetd 2 (198) 0 (0)
sendmail 4 (97) 4 (97)

Table 5.16: Behavior of SyscallAnomaly with and without the Structural
Inference Model

paths for mimicry attacks. For instance, executing ps -[x) has a very
high probability, because it is indistinguishable from the usual form of
the command ps -axu.

Token Search Model

This model has various flaws. First of all, it is not probabilistic, that is,
it does not save the relative probability of the different values. Therefore
a token with 1000 occurrences is considered just as likely as one with a
single occurrence in the whole training. This makes the training phase
non resistant to outliers or attacks in the training dataset.

Additionally, since the model is applied only on fields where it has
already been determined that they contain a token, the Pearson test is
not useful: in fact, in all our experiments, it never had a negative result.

String Length model

The string length model works very well (too well, as we note in Sec-
tion 5.4). However, the code in the version we downloaded implements
different logics than what is described in [107].

5.3 Beyond SyscallAnomaly: our proposal

5.3.1 Motivations for our proposal

Our objective is to create a host based intrusion detection system which
deals with the sequence and the content of system calls, improving the
ideas presented in LibAnomaly and solving the problems we outlined.
Basically, the objectives that motivated our research are:

115

5 Host Based Intrusion Detection Applications

1. Improving the reliability of the proposed models for anomaly de-
tection on arguments, creating a correlation among the various
models on different arguments of the same syscall.

2. Introducing a model of the interrelation among the sequence of
system calls over time.

In order to obtain the first improvement, we introduce the concept
of clustering the system calls, in order to create, inside the set of the
invocations of a single system call, subsets of arguments with an higher
similarity and better characterization. This idea arises from the consid-
eration that some system calls do not exhibit a single normal behavior,
but a plurality of behaviors (ways of use) in different portions of a pro-
gram. For instance, as we will see in the next sections, an open syscall
can have a very different set of arguments when used to load a shared
library or a user-supplied file.

This clustering step therefore creates relationships among the values
of various arguments, creating correlations (e.g. among some filenames
and particular opening modes).

The second improvement can be obtained by imposing a sequence-
based correlation model through a Markov Chain, thus making the sys-
tem also able to detect deviations in the normal program flow. This
enables the system to detect deviations in the control flow of the pro-
gram, as well as abnormalities in each single call, making evident not
just the single point of the attack, but the whole anomalous context that
arises as a consequence.

5.3.2 Clustering of system calls

Problem statement and algorithm description

Our objective, as we stated above, is to detect, for each system call,
clusters of invocation with similar arguments, and to create models on
this clusters, and not on the general system call, in order to better
capture normality and deviations.

We applied a hierarchical clustering algorithm in order to find these
clusters [138]. Hierarchical clustering is a bottom-up technique that
progressively joins “similar” elements, until it reaches a predetermined
number of clusters or inter-cluster distance rises above a certain thresh-
old. As we already noted in Section 4.3.4, any clustering technique is
substantially dependent on the definition of “distance”.

Defining a distance among the set of arguments of a system call is not
an easy task. Some possible metrics are:

116

5.3 Beyond SyscallAnomaly: our proposal

Number of occurrences: we could associate to each argument a number
proportional to its frequency of occurrence. In this way, common
arguments will be clustered together.

Path depth: considering just the pathname, we could use the depth of
the path as a distance, fixing that /etc/passwd (depth 1) is more
similar to /etc/group (still 1) than to /usr/src/linux/Makefile

(depth 3).

Path length: same observation as above, but using the length in char-
acters instead than the depth.

Character distribution: the distance could grow if the distribution of
characters in the names is different.

File extensions: whenever extensions are used, if the extension is differ-
ent the two arguments should be more distant.

Difference in flags and modes: two calls should have an higher dis-
tance if the flag and mode fields have different values.

In the following, we will better define how we compute distance in our
case.

A hierarchical algorithm is conceptually very simple. It begins by
assigning each of the N input elements to a singleton cluster, and com-
puting an N × N distance matrix D. Then the algorithm progressively
joins the elements i and j such that D[i, j] = min(D). D is updated by
substituting i and j rows and columns with the row and column of the
distances between the newly joined cluster and the remaining ones. The
time complexity is roughly O(N2).

Distance between clusters can be defined in three ways:

single-linkage if the distance between two clusters is the minimum dis-
tance between an element of the first cluster and an element of the
second cluster;

complete-linkage if the distance between two clusters is the maximum
distance between an element of the first cluster and an element of
the second cluster;

average-linkage if the distance between two clusters is the average dis-
tance between an element of the first cluster and an element of the
second cluster.

117

5 Host Based Intrusion Detection Applications

Program Name open syscall %

fdformat 92.42%

eject 93.23%

ps 93.62%

telnetd 91.10%

ftpd 95.66%

sendmail 86.49%

samba 92.72%

Table 5.17: Percentage of open syscalls in the IDEVAL dataset

Syscall Occurrences

open1 100

open2 88

open3 21

Table 5.18: Relative frequencies of three open syscalls

Experiments on the open syscall

Our first experiments focused on the open system call, which is the
most common one in the IDEVAL dataset, as can be seen in Table 5.17.
Indeed, open is probably the most used system call, since it opens a
file or device in the file system and creates an handle (descriptor) for
further use. Open has three parameters: the file path, a set of flags
indicating the type of operation, e.g. read-only, read-write, append,
create if non existing, etc. (the complete list of flags is specified in
/usr/include/bits/fcntl.h), and optionally an opening mode, which
specifies the permissions to set in case the file is created.

In order to apply a hierarchical clustering algorithm and meaningfully
discover clusters of similar uses of the open syscall, we need to define a
distance function among elements as well as a stop criterion.

open1 open2 open3

open1 0 0.75 5

open2 0.75 0 4.24

open3 5 4.24 0

Table 5.19: Distances obtained by the example in Table 5.18

118

5.3 Beyond SyscallAnomaly: our proposal

For our first experiments, we used tentatively a distance composed by
the sum of the following metrics:

• A fixed contribute for each argument which has a different value.

• A distance value assigned on the basis of relative occurrence of
system calls. The distance among occurrence is normalized and
multiplied by a constant, which is a parameter. For an example,
observe Table 5.18: the maximum distance is 79 (among open1

and open3), which will be used as a normalization factor. If we
choose 5 as our scale parameter, the distances will be as shown in
Table 5.19.

• A contribute based on path length (normalized against the maxi-
mum difference in path length).

• A fixed contribute based on the difference in path depth.

• A contribute based on the path, comparing the names of corre-
sponding directories. For instance, comparing /usr/local/bin

against /usr/local/lib, we compare usr⇔ usr, local⇔ local,
and bin⇔ lib, obtaining a distance equal to 1 (the number of non
corresponding elements), which can be multiplied for an arbitrary
weight constant.

• A fixed contribute if the file extensions are different.

• A contribute proportional to character distribution, in this first
example on the average value of the character ASCII code.

For visualizing the results on a simple example, here is the execution
log of the open syscalls in fdformat:

/usr/lib/libvolmgt.so.1, -rwxr-xr-x

/usr/lib/libintl.so.1, -rwxr-xr-x

/usr/lib/libc.so.1, -rwxr-xr-x

/usr/lib/libadm.so.1, -rwxr-xr-x

/usr/lib/libw.so.1, -rwxr-xr-x

/usr/lib/libdl.so.1, -rwxr-xr-x

/usr/lib/libelf.so.1, -rwxr-xr-x

/usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x

/devices/pseudo/mm@0:zero, crw-rw-rw-

/devices/pseudo/vol@0:volctl, crw-rw-rw-

/usr/lib/locale/iso_8859_1/LC_CTYPE/ctype, -r-xr-xr-x

119

5 Host Based Intrusion Detection Applications

Model Scaling parameter

Difference of Arguments +5

Number of occurrences max +2

Different file extensions +2

Path length max +2

Path depth +1 per level

Character distribution 0.5 × average

Table 5.20: Configuration of parameters used for the experiment

File Distance from libc.so.1

libintl.so.1 7.10

ctype 23.18

libc psr.so.1 11.99

libw.so.1 5.55

libvolmgt.so.1 8.22

vol@0:volctl 23.88

mm@0:zero 21.29

libadm.so.1 5.97

libdl.so.1 5.65

libelf.so.1 6.09

Table 5.21: Distances from libc.so.1 in program fdformat

The scaling parameters we used for the metrics described above are
reported in Table 5.20 (they are obviously the result of experimental
tuning). In Table 5.21 we report, as an example, a portion of the matrix
of distances.

It is easy to see that libc.so.1 is opened in a very similar way to
other libraries (among 5.65 and 11.99) and very differently than devices
vol@0:volctl and mm@0:zero and localization file ctype; this is ex-
actly the type of results we expected to see. The distance of library
libc psr.so.1 (11.99) is much higher than the other libraries, because
it is located in a path (/usr/platform/sun4u/lib) different than the
others (/usr/lib). This factor however does not bring libc psr.so.1

so far away to be outside the proper cluster.

The clustering process runs with the results in Table 5.22. In the first
6 steps, the libraries are clustered together. Then the two devices join,
and libc psr.so.1 finally lumps together with the other libraries. If

120

5.3 Beyond SyscallAnomaly: our proposal

Step Elements merged distance

1 libw.so.1 5.097
libdl.so.1

2 libadm.so.1 5.125
libelf.so.1

3 libw.so.1, libdl.so.1 5.321
libadm.so.1, libelf.so.1

4 libc.so.1 5.555
libw.so.1, libdl.so.1, libadm.so.1, libelf.so.1

5 libintl.so.1 6.007
libc.so.1, libw.so.1, libdl.so.1, libadm.so.1, . . .

6 libvolmgt.so.1 6.122
libintl.so.1, libc.so.1, libw.so.1, libdl.so.1, . . .

7 vol@0:volctl 7.588
mm@0:zero

8 libc psr.so.1 8.768
libvolmgt.so.1, libintl.so.1, libc.so.1, libw.so.1, . . .

9 vol@0:volctl, mm@0:zero 18.070
libc psr.so.1, libvolmgt.so.1, libintl.so.1, . . .

10 ctype 22.881
vol@0:volctl, mm@0:zero, libc psr.so.1, . . .

Table 5.22: Cluster generation process for fdformat

121

5 Host Based Intrusion Detection Applications

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

M
in

im
um

 d
is

ta
nc

e

Process step

Figure 5.4: Minimum distance between clusters in function of the current
step

we let the process go on further, everything ends up in one big cluster.
We must thus determine a stop criterion.

As it is obvious, the distance among the elements to be merged is
monotonous non decreasing. It grows slowly up to a point where a step
upwards happens: this is evident in Figure 5.3.2. In this point, non-
homogeneous elements are getting clustered together. This is the stop
criterion we will use in Section 5.3.2.

In order to show the generality of the results, in Table 5.23 we show the
clusters generated for ps. As we can see, also in this case the partitions
make sense. Accesses in /proc, libraries and the device mm@0:zero are
clustered apart. Similar results can be obtained for eject, telnetd,
ftpd, sendmail and samba.

Computing meaningful distances

As we stated above, creating a good definition of distance is fundamental
for a successful clustering process.

After our first experiments, we generalized the following distance mea-
sure for computing the distance among two corresponding arguments:

122

5.3 Beyond SyscallAnomaly: our proposal

Cluster 1 /devices/pseudo/mm@0:zero

Cluster 2 /tmp/foo

Cluster 3 /proc

Cluster 4 /tmp/ps data

Cluster 5 /etc/.name service door

Cluster 6 /usr/share/lib/zoneinfo/US/Eastern

Cluster 7 /proc/728, /proc/916, /proc/608, [...]

Cluster 8 /usr/lib/libintl.so.1, /usr/lib/libc.so.1, [...]

Table 5.23: Clusters generated for program ps

d =

{

K + αδ if the elements are different
0 otherwise

(5.3)

where K is a fixed quantity which creates a “step” between different
elements, while the second term is the real difference among the argu-
ments (∆), normalized by a parameter α. How the actual difference is
computed will be described below in more detail for various types of
arguments.

Computation of distance among two different system calls will simply
be the sum of distances among corresponding arguments

Dtot =
i

∑

∀arguments

di

Stop criterion

Since a hierarchical merging algorithm would not stop until all the inputs
have been joined in a single cluster, we need to set a stop criterion for
merging.

We must choose a trade-off, as always, between two conflicting re-
quirements:

• Creating well-defined clusters that can be characterized well, which
means creating more clusters with fewer elements;

• Limiting the number of clusters to avoid overfitting, which means
creating fewer clusters with more elements.

123

5 Host Based Intrusion Detection Applications

Creating representative candidate models

Hierarchical clustering creates a problem for the detection phase, since
there isn’t a concept analogous to the concept of “centroid” in partition-
ing algorithms that can be used for clustering new inputs.

We thus need to generate, from each cluster, a “representative model”
that can be used to cluster further inputs. This is a well known problem
which needs a creative solution. For each identified type of argument,
we developed a model that can be used to this end.

These models must be able to associate a probability to inputs, i.e.
generate a probability density function that can be used to state the
probability with which the input belongs to the model. In most cases,
as we will see, this will be in the form of a discrete probability, but more
complex models such as HMMs will also be used. Moreover, a concept
of distance must be defined among the model and the input.

The model must be able to “incorporate” new candidates during train-
ing, and to slowly adapt in order to represent the whole cluster.

It is important to note that it’s not strictly necessary for the candidate
model, and its distance functions to be the same used for clustering
purposes.

5.3.3 Clustering models and distances for each type of
argument

As we stated above, at least 4 different types of arguments are passed
to system calls:

1. Path names and file names,

2. Discrete numeric values,

3. Arguments passed to programs for execution,

4. Users and group identifiers (UIDs and GIDs).

For each type of argument, we created a representative candidate
model and appropriate distance functions, which we describe in detail
in the following sections.

Path names and file names

Path names and file names are very frequently used in system calls.
They are complex structures, rich of useful information, and therefore
difficult to properly model.

Some of the features we would like to capture are:

124

5.3 Beyond SyscallAnomaly: our proposal

• The path, since files residing in the same branch of the file system
are more similar than ones in different branches.

• Extensions, because they can indicate similitude of type.

• Common prefixes in the filename (e.g. the prefix lib) can be
indicative.

• Inside a path, the first and the last directory carry the most sig-
nificance.

• Path length is indicative of similitude.

• If the filename has a similar structure to other filenames, this is
indicative.

• File system conventions (e.g. the leading dot to indicate “hidden”
files in UNIX file systems) can be considered.

For the clustering phase, we chose to re-use a very simple model al-
ready present in SyscallAnomaly, the directory tree depth. This is easy
to compute, and experimentally leads to fairly good results even if very
simple. Thus, in Equation 5.3 we set ∆ to be the difference in depth.
E.g.: let Kpath = 5 and αpath = 1; comparing /usr/lib/libc.so

and /etc/passwd we obtain D = 5 + 1 ∗ 1 = 6, while comparing
/usr/lib/libc.so and /usr/lib/libelf.so.1 we obtain D = 0.

After clustering has been done, on the final clusters we can build
more complex and rich models. We decided to represent the path name
of the files of a cluster with a probabilistic tree which contains all the
directories involved with a probability weight for each.

For instance, if a cluster contains the files: /usr/lib/libc.so.1,
/usr/lib/libelf.so.1, /usr/local/lib/libintl.so.1, the generated
tree will be as in Figure 5.5.

Filenames are usually too variable, in the context of a single cluster,
to allow a meaningful model to be created. However, we chose to set up
a system-wide threshold below which the filenames are so regular that
they can be considered a model, and thus any other filename can be
considered an anomaly.

The probability returned by the model is therefore PT = Pa ∗ Pf ,
where Pa is the probability that the path has been generated by the
probabilistic tree and Pf is set to 1 if the filename model is not significant
or if it is significant and the filename belongs to the learned set, and to
0 if the model is significant and the filename is outside the set.

125

5 Host Based Intrusion Detection Applications

Figure 5.5: Probabilistic tree example

Discrete numeric values

Numeric values such as flags, opening modes, etc. usually are chosen
from a limited set. Therefore we can memorize all of them along with a
discrete probability.

Since in this case two values can only be “equal” or “different”, we
set up a binary distance model for clustering, where the distance among
x and y is:

d =

{

Kdisc if x 6= y
0 if x = y

(5.4)

and Kdisc, as usual, is a user-defined parameter.
In this case, fusion of models and incorporation of new elements are

straightforward, as well as the generation of probability for a new input
to belong to the model.

Execution argument

We noticed that execution arguments (i.e. the arguments passed to the
execve syscall) are in need of special handling. Therefore we introduced
an ad-hoc model to cluster and represent them, based on length. We
noticed that this was an extremely good indicator of similitude of use.

Once again, we set up a binary distance model, where the distance
among x and y is:

d =

{

Karg if |x| 6= |y|
0 if x = y

(5.5)

denoting with |x| the length of x and with Karg, as usual, a user-defined
parameter. In this way, arguments with the same length are clustered
together.

For each cluster, we compute the minimum and maximum value of
the length of arguments. Fusion of models and incorporation of new

126

5.3 Beyond SyscallAnomaly: our proposal

elements are straightforward. The probability for a new input to belong
to the model is 1 if its length belongs to the interval, and 0 otherwise.

Users and groups

Many arguments express UIDs or GIDs, so we developed an ad-hoc model
for these values. Our reasoning is that all these discrete values have
three different meanings: UID 0 is reserved to the super-user, low values
usually are for system special users, while real users have UIDs and GIDs
above a threshold (usually 1000). So, we divided the input space in
these three groups, and computed the distance for clustering using the
following formula:

d =

{

Kuid if belonging to different groups
0 if belonging to the same group

(5.6)

and Kuid, as usual, is a user-defined parameter.
Since UIDs are limited in number, they are preserved for testing, with-

out associating a discrete probability to them. Fusion of models and
incorporation of new elements are straightforward. The probability for
a new input to belong to the model is 1 if the UID belongs to the learned
set, and 0 otherwise.

Association of models to system call arguments

In Table 5.24 we list the association of the models described above with
the arguments of each of the system calls we take into account.

Validation of the models

In order to validate the models generated from cluster, we can cross-
validate them by the following process:

1. Creating clusters on the training dataset;

2. Generating models from clusters;

3. Using models to classify the clusters, and checking that inputs are
correctly assigned to the same clusters they contributed to create.

Table 5.25 shows, for each program in the IDEVAL dataset (con-
sidering the representative open system call), the percentage of inputs
correctly classified, and a confidence value, computed as the probability
for each element to belong to the correct cluster. The result are sat-
isfactory, with a lower value for the ftpd program, which has a wider
variability in filenames.

127

5 Host Based Intrusion Detection Applications

Syscall Model used for the arguments

open pathname → Path Name
flags → Discrete Numeric
mode → Discrete Numeric

execve filename → Path Name
argv → Execution Argument

setuid uid → User/Group
setgid

setreuid ruid → User/Group
setregid euid → User/Group

setresuid ruid → User/Group
setresgid euid → User/Group

suid → User/Group

rename oldpath → Path Name
newpath → Path Name

symlink oldpath → Path Name
link newpath → Path Name

mount source → Path Name
target → Path Name
flags → Discrete Numeric

umount target → Path Name
flags → Path Name

exit status → Discrete Numeric

chown path → Path Name
lchown owner → User/Group

group → User/Group

chmod path → Path Name
mode → Discrete Numeric

creat pathname → Discrete Numeric
mode → User/Group

mkdir pathname → Path Name
mode → Discrete Numeric

mknode pathname → Path Name
mode → Discrete Numeric
dev → Discrete Numeric

unlink pathname → Path Name

rmdir pathname → Path Name

Table 5.24: Association of models to System Call Arguments in our pro-
totype

128

5.3 Beyond SyscallAnomaly: our proposal

Program Nr. of elements % correct assignments Confidence

fdformat 10 100% 1

eject 12 100% 1

ps 525 100% 1

telnetd 38 100% 0.954

ftpd 69 97.1% 0.675

sendmail 3211 100% 0.996

Table 5.25: Cluster validation process

Program Nr. of Elements Näıve Optimized

ps 880 104 MB 9 MB

sendmail 3450 700 MB 190 MB

Table 5.26: RAM memory reduction through our optimizations

5.3.4 Optimizations introduced on the clustering algorithm

The hierarchical algorithm as described in Section 5.3.2 is too heavy both
for computation as well as for memory requirements. Besides introduc-
ing various tricks to speed up our code and reduce memory occupation
(as suggested in [203]), we introduced an heuristic to reduce the average
number of steps required by the algorithm.

Basically, at each step, instead of joining just the elements at minimum
distance dmin, also all the elements that are at a distance d < βdmin
from both the elements at minimum distance are joined, where β is a
parameter of the algorithm. In this way, groups of elements that are
very close together are joined in a single step, making the algorithm (on
average) much faster, even if worst-case complexity is unaffected.

Tables 5.26 and 5.27 indicate the optimization results.

Program Nr. of Elements Näıve Optimized

fdformat 11 0.14” (0.12”) 0.014” (0.002”)

eject 13 0.24” (0.13”) 0.019” (0.003”)

ps 880 19’52” (37”) 7” (5”)

sendmail 3450 unable to complete 7’19” (6’30”)

Table 5.27: Execution time reduction through our optimizations and use
of the heuristic

129

5 Host Based Intrusion Detection Applications

5.3.5 Adding correlation: introduction of a Markov model

Model description and comparison with related works

In order to take into account the execution context of each system call,
we decided to use a first order, observable Markov model to represent
the program flow. The model states represent the system calls, or better,
each cluster of each system call, as detected during the clustering pro-
cess. For instance, if we detected three clusters in the open syscall, and
two in the execve syscall, then the model will be constituted by five
states: open1, open2, open3, execve1, execve2. Each transition will
reflect the probability of passing from one of these groups to another
through the program.

This simple, short range correlation model isn’t new by itself, and was
proposed, although not fully explored, e.g in [204] and later analyzed
in [104]. Alternatively, other authors proposed to use static analysis, as
opposed to dynamic learning, to profile a program normal behavior. For
instance, this approach was presented in [101] using syscall call graphs,
in [99] using deterministic finite-state automata, and in [100] using non-
deterministic FSA. Giffin et al. [205] developed a different version of
this approach, based on the analysis of the binaries, and integrating the
execution environment as a model constraint.

In [104] Hidden Markov models are compared with various other rep-
resentations [89, 93, 96] and shown to perform considerably better, even
if with an added computational overhead. In [103] they are observed to
perform considerably better than static analysis models.

Making the models observable dramatically decreases this overhead,
as observed in [206]. The same article introduces considerations which
have deep affinities to the considerations we made in Section 5.1.

Training phase

During training, we will consider each execution of the program in the
training set (making use of the PID value) as a sequence of observation,
and train the model on these sequences.

The clustering process will already have generated the clusters for
each system call, and the corresponding models. These models are used
to classify each syscall into the correct cluster, by computing the prob-
ability value for each model and choosing the cluster whose models give
out the maximum composite probability max(

∏i
∀ model Pi).

The probabilities of the Markov model are then straightforward to
compute. The final result can be similar to what is shown in Figure 5.6.

130

5.3 Beyond SyscallAnomaly: our proposal

Figure 5.6: Example of Markov model

In future extensions of this work, the Markov model could then be
simplified through a merging procedure, as outlined in Section 5.1.6.
From our experiments, in the case of the simple traces of the IDEVAL
dataset, this step is unnecessary.

Learning the anomaly thresholds

For detection, we have three distinct anomaly probabilities to take into
account:

• The probability of the execution sequence inside the Markov model
up to now, Ps;

• The probability of the syscall to belong to the best-matching clus-
ter (the one it has been assigned to), Pc;

• The latest transition probability in the Markov model, Pm.

We decided to combine the latter two probabilities into a single “punc-
tual” probability of the single syscall, Pp = PcPm, keeping a separate
value for the “sequence” probability Ps.

In order to detect appropriate threshold values, we use the training
data, compute the lowest probability over all the dataset for that single
program (both for the sequence probability, and for the punctual prob-
ability), and set this (eventually modified by a tolerance value) as the
alert threshold.

Detection phase

During detection, each system call is considered in the context of the
process. The cluster models are once again used to classify each syscall

131

5 Host Based Intrusion Detection Applications

Program name Number of executions

fdformat 5

eject 7

ps 105

ftpd 65

telnetd 1082

sendmail 827

Table 5.28: Number of instances of execution in the IDEVAL dataset

into the correct cluster, by computing the probability value for each
model and choosing the cluster whose models give out the maximum
composite probability Pc = max(

∏i
∀ model Pi). This is also the first

component of the punctual probability.

Ps and Pm are computed from the Markov model, and require our
system to keep track of the current state for each running process. If
either Ps or Pp = PcPm are lower than the anomaly threshold, the
process is flagged as anomalous.

5.4 Questioning again the validity of the DARPA
dataset

We already reported in Section 4.6 some critical evaluations of the
DARPA IDEVAL dataset, focused on the network dumps. The works
cited there, however, fail to take into account the host based auditing
data contained in the dataset. This part of the dataset, however, is all
but immune from problems.

5.4.1 Limited variability and predictability

The first problem is that in the training datasets there are too few
execution instances for each software, in order to representatively model
its behavior, as can be seen in Table 5.28. Of just 6 programs present,
for two (fdformat and eject), only a handful of executions is available,
making training unrealistically simple.

The number of system calls used is also extremely limited, making
execution flows very similars. Additionally, most of these executions are
similars, not covering the full range of possible execution paths of the
programs (thus causing overfitting of any anomaly model).

For instance, in Figure 5.7 we have plotted the distribution of the

132

5.4 Questioning again the validity of the DARPA dataset

 0

 100

 200

 300

 400

 500

 600

 700

 25 30 35 40 45 50 55 60 65 70

N
um

be
r

of
 o

cc
ur

re
nc

ie
s

Distance in syscalls

Figure 5.7: telnetd: distribution of distance among two execve system
calls

distance (in system calls) among two execution of the execve system
call in telnetd training data. As can be seen, in most cases a distance
of 34 system calls is observed. This clearly shows how the executions of
the program are sequentially generated with some script, and suffer of
a lack of generality.

The arguments show the same lack of variability. In all the training
dataset, all the arguments of the system calls related to telnetd belong
to the following set:

fork, .so.1, utmp, wtmp, initpipe, exec, netconfig,

service_door, :zero, logindmux, pts

Just to give another example, the FTP operations (30 sessions on the
whole) use a very limited subset of file (on average 2 per session), and are
performed always by the same users on the same files, for a limitation of
the synthetic generator of these operations. In addition, during training,
no uploads or idle sessions were performed.

5.4.2 Outdated software and attacks

The last dataset in the IDEVAL series was created in 1999. Obviously,
since then, everything changed: the usage of network protocols, the
protocols themselves, the operating systems and applications used. For
instance, all the machines involved are Solaris version 2.5.1 hosts, which
are evidently ancient nowadays.

133

5 Host Based Intrusion Detection Applications

The attacks are similarly outdated. The only attack technique used
are buffer overflows, and all the instances are detectable in the execve

system call arguments. As we discussed before in 2.4, nowadays at-
tackers and attack type are much more complex than this, operating at
various layers of the network and application stack, with a wide range
of techniques and scenarios that were just not imaginable in 1999.

5.4.3 String Length as the sole indicator

We were able to create a detector which finds all the attacks without
any false positive. A simple script which flags as anomalous any argu-
ment longer than 500 characters can do this. In other words: the only
meaningful indicator of attacks in the IDEVAL dataset is the length of
strings.

5.5 Result analysis

For the reasons outlined above in Section 5.4, as well for the uncertainty
outlined in Section 5.2.4, we do not think that purely numerical results
on detection rate or false positive rate over the IDEVAL dataset are
significant. We think that it is much more interesting to compare the
results obtained by our software with the results of SyscallAnomaly in
the terms of a set of case studies, comparing them singularly.

What turns out is that our software has two main advantages over
LibAnomaly:

• a better contextualization of anomaly, which lets the system detect
whether a single syscall has been altered, or if a sequence of calls
became anomalous consequently to a suspicious attack;

• a strong characterization of subgroups with closer and more reli-
able sub-models.

As an example of the first advantage, let us analyze again the program
fdformat, which was already analyzed in Section 5.2.5. (Table 5.5).

Our system correctly flags execve as anomalous (for an excessive
length of input). It can be seen that transition probability is 1 (the
system call is the one we expected), but the models of the syscall are
not matching, generating a very low probability. The localization file
opening is also flagged as anomalous for two reasons: scarce affinity with
the model (because of the strange filename), and also erroneous transi-
tion between the open subgroups open2 and open10. The attack effect
(chmod and the change of permissions on /export/home/elmoc/.cshrc)

134

5.5 Result analysis

Anomalous Syscall execve0 (START ⇒ execve0)
Argument 1 /usr/bin/fdformat

Argument 2 fdformat\0x20\0x20\0x20\0x20[...]
Model Probability 0.1
Transition Probability 1
Global Prob. (thresh.) 0.1 (1)

Anomalous Syscall open10 (open2 ⇒ open10)
Argument 1 /usr/lib/locale/iso 8859 1/[...]

Argument 2 -r-xr-xr-x

Model Probability 5 ∗ 10−4

Transition Probability 0
Global Prob. (thresh.) 0 (undefined)

Anomalous Syscall open11 (open10 ⇒ open11)
Argument 1 /devices/pseudo/vol@0:volctl

Argument 2 crw-rw-rw-

Model Probability 1
Transition Probability 0
Global Prob. (thresh.) 0 (undefined)

Anomalous Syscall chmod (open11 ⇒ chmod)
Argument 1 /devices/pseudo/vol@0:volctl

Argument 2 crw-rw-rw-

Model Probability 0.1
Transition Probability 0
Global Prob. (thresh.) 0 (undefined)

Anomalous Syscall exit0 (chmod ⇒ exit0)
Argument 1 0

Model Probability 1
Transition Probability 0
Global Prob. (thresh.) 0 (undefined)

Table 5.29: fdformat: attack and consequences

135

5 Host Based Intrusion Detection Applications

and various intervening syscalls are also flagged as anomalous because
the transition has never been observed. This also helps us understand
(while reviewing logs) whether or not the buffer overflow attack had suc-
cess. A similar observation can be done on the execution of chmod on
/etc/shadow ensuing an attack on eject.

In the case of ps, the system flags the execve system call, as usual,
for excessive length of input. File /tmp/foo is also detected as anoma-
lous argument for open. In LibAnomaly, this happened just because
of the presence of an underscore, and was easy to bypass. In our case,
/tmp/foo is compared against a sub-cluster of open which contains only
the /tmp/ps data (see Table 5.23), and therefore will flag as anomalous,
with a very high confidence, any other name, even if structurally similar.
A sequence of chmod syscalls executed inside directory /home/secret as
a result of the attacks are also flagged as anomalous program flows.

136

6 Conclusions and future work

In this work we have summarized our researches on the topic of unsu-
pervised learning technologies and their application to the problem of
intrusion detection.

We have introduced the key problems of information security, in par-
ticular the problem of making computer systems tamper evident: this
gives birth to the problem of intrusion detection.

We have analyzed the different technologies and types of intrusion
detection systems, the problems and the open issues to be solved, and
the state of the art of the research in the field, focusing on earlier stud-
ies on the application of unsupervised learning algorithms to intrusion
detection.

We have described the challenges we met while implementing an inno-
vative model of anomaly based network intrusion detection system, com-
pletely based on unsupervised learning techniques. We have described
a novel, two tier architecture for such a system. We have shown how a
first tier of clustering (based on Self Organizing Maps) can perform an
efficient, unsupervised pattern recognition on packet payloads. We have
considered possible alternate metrics for clustering, and shown how the
euclidean metric performs overall. We have also shown how the curse of
dimensionality requires an appropriate resolution, and proposed various
heuristics to improve the runtime efficiency of the algorithm, obtaining
a throughput rate almost three times higher than the original one, with
marginal misclassification rates, without truncating the number of the
bytes of the payload taken into account.

We have described how we combined this first tier with a modified
version of the SmartSifter outlier detection algorithm, and we have given
results on the detection rate and false positive rate, showing that the
system outperforms a similar, state-of-the-art system by almost an order
of magnitude in term of false positive reduction. We have also studied
how the errors introduced by our heuristics affect the algorithm detection
capabilities, and concluded that our modified algorithm works as well as
the original version of the SOM.

Future works on this system will strive to further improve its speed,
as well as to reduce the false positive rate as much as possible.

137

6 Conclusions and future work

We have also described our efforts to implement a host based intru-
sion detection system based on the sequence of system calls, as well
as on their arguments. Firstly, we have introduced a general frame-
work for behavior detection and developed an algorithm for building a
Markov-based model of behavior, using concepts from the field of ethol-
ogy. We have then focused on the problem of detecting anomalies in
system calls, by analyzing the only existing framework which takes into
account the anomalies in their arguments, by improving its models, and
complementing it with a behavioral Markov model in order to capture
correlation and aberrant behaviors. We have shown how the resulting
model is able to correctly contextualize alarms, giving the user more
information to understand what caused any false positive, and to detect
variations over the execution flow, as opposed to punctual variations
over single instances. The system is also auto-tuning, even if a wide
range of parameters can be set by the user to improve the quality of
detection.

In the course of our work, we have also outlined a number of shortcom-
ings in the IDEVAL dataset we used in our experiments, which is still
the only standard dataset for the validation and evaluation of Intrusion
Detection Systems worldwide. The network data suffer of various well
known problems, regularities, and characteristic flaws. These character-
istics have been carefully considered, and we have tried to minimize their
impact on the validity of our results. The execution traces for system
call analysis are also flawed. They are too simple and predictable, they
do not cover the full range of options of the programs, they are repre-
sentative of a very small subset of programs and in some cases these
programs are executed just a few times. This creates the conditions for
overfitting of any anomaly detection algorithm. In addition, the 1999
dataset is hopelessly outdated, both because the protocols, applications
and operating systems used are not representative any more of normal
network usage; and also because the attack types are not representative
of the modern threat scenario. We have outlined how we validated our
results in order to obviate to such glaring deficiencies of the dataset.

A theme we are beginning to research on now, and which is the natural
evolution of this work, is how to integrate the network and host based
systems we designed, in order to use the results of both to automatically
filter out false positives and to improve correlation and alert quality.

Another theme we did not deal with in this research is how much
information a human operator can get from the system (aside from a
generic “threat alert”) and how an human expert could help refine the
training of the system, with a sort of “semi-supervised” approach. These
are surely interesting themes which remain open for future extensions of

138

this work.

139

Bibliography

[1] ISO. Information security code of practice. Technical Report ISO
17799, International Standards Organization, Geneva, Switzer-
land, 2005. revised 1999, 2000, 2002, 2005.

[2] J. P. Anderson. Computer security threat monitoring and surveil-
lance. Technical report, J. P. Anderson Co., Ft. Washington, Penn-
sylvania, Apr 1980.

[3] Stefano Zanero. Detecting 0-day attacks with learning intrusion
detection systems. In Blackhat USA 2004 Briefings, 2004.

[4] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion,
and denial of service: Eluding network intrusion detection. Tech-
nical Report T2R-0Y6, Secure Networks, Calgary, Canada, 1998.

[5] Ross Anderson. Security Engineering. John Wiley & Sons, USA,
2001.

[6] D. Bell and L. LaPadula. Secure computer systems: Mathematical
foundations model. Technical report, Mitre Corp., Bedford, 1975.

[7] A. Rhodes and W. Caelli. A review paper: Role based access
control. Technical report, Information Security Research Centre,
1999.

[8] Gary Stoneburner. Underlying technical models for information
technology security: Recommendations of the national institute of
standards and technology. Technical Report NIST Special Publi-
cation 800-33, Computer Security Division, Information Technol-
ogy Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD, 2001.

[9] Franois Marie Arouet (Voltaire). Candide ou l’optimisme. 1795.

[10] Anthony Boswell. Specification and validation of a security policy
model. IEEE Trans. on Soft. Eng., 21(2):63–68, Feb 1995.

141

Bibliography

[11] Bryce. Security engineering of lattice-based policies. In Proc.
10th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997.

[12] E.W. Dijkstra. Notes on structured programming. In
C.A.R. Hoare O.J. Dahl, E.W. Dijkstra, editor, Structured Pro-
gramming, chapter 1, pages 1–82. Academic Press, London, 1972.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Soft-
ware Engineering. Prentice Hall, Englewood Cliffs, NJ, 1991.

[14] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical
study of the reliability of UNIX utilities. Comm. of the ACM,
33(12):32–44, 1990.

[15] A. K. Ghosh, T. O’Connor, and G. McGraw. An automated ap-
proach for identifying potential vulnerabilities in software. In Proc.
of the 1998 IEEE Symp. on Security and Privacy, pages 104–114,
1998.

[16] Internet security threat report, vol. viii. Technical report, Syman-
tec Corporation, September 2005.

[17] Bruce Schneier. Locks and full disclosure. IEEE Security and
Privacy, 1(2):88, 2003.

[18] Jeff Bollinger. Economies of disclosure. SIGCAS Comput. Soc.,
34(3):1–1, 2004.

[19] ISO. Risk management – vocabulary – guidelines for use in stan-
dards. ISO/IEC ISO/IEC Guide 73, International Standards Or-
ganization, Geneva, Switzerland, 2002.

[20] ISO. Information technology – security techniques – management
of information and communications technology security – part 1:
Concepts and models for information and communications tech-
nology security management. Technical Report ISO 13335–1, In-
ternational Standards Organization, Geneva, Switzerland, 2004.

[21] Marcus J. Ranum. The six dumbest ideas in computer security.
available online at http://www.ranum.com/security/computer
security/editorials/dumb/, September 2005.

[22] The 2002 csi/fbi computer crime and security survey.
Technical report, Computer Security Institute – Fed-
eral Bureau of Investigations, 2002. available online at
http://www.gocsi.com/press/20020407.html.

142

Bibliography

[23] ISO. Information technology – security techniques – information
security incident management. ISO/IEC ISO/IEC TR 18044, In-
ternational Standards Organization, Geneva, Switzerland, 2004.

[24] Niels Ferguson and Bruce Schneier. Practical Cryptography. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[25] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA,
1995.

[26] D. L. Lough. A taxonomy of computer attacks with applications to
wireless networks. PhD thesis, Virginia Polytechnic Institute and
State University, April 2001.

[27] Ulf Lindqvist and Erland Jonsson. How to systematically classify
computer security intrusions. In Proc. of the 1997 IEEE Sympo-
sium on Security and Privacy, 1997.

[28] G. Chakrabarti, A.; Manimaran. Internet infrastructure security:
a taxonomy. IEEE Network, 16(6):13–21, Nov/Dec 2002.

[29] P. G. Neumann and D. B. Parker. A summary of computer misuse
techniques. In Proceedings of the 12th National Computer Security
Conference, October 1989.

[30] J. D. Howard. An Analysis Of Security Incidents
On The Internet, 1989–1995. PhD thesis, Carnegie–
Mellon University, April 1997. available online
http://www.cert.org/research/JHThesis/Start.html.

[31] Sun Tzu. The Art of War. available online at ftp://uiarchive.
cso.uiuc.edu/pub/etext/gutenberg/etext94/sunzu10.zip.

[32] The Honeynet Project. Know Your Enemy: Revealing the Security
Tools, Tactics, and Motives of the Blackhat Community. Addison-
Wesley Professional, August 2001.

[33] The Honeynet Research Alliance. Know your enemy - trend analy-
sis. Technical report, The Honeynet Research Alliance, December
2004.

[34] Thorsten Holz. A short visit to the bot zoo. IEEE Security &
Privacy, 3(3):76–79, 2005.

[35] E. ’Aleph1’ Levy. Smashing the stack for fun and profit. Phrack
magazine, 7(49), Nov 1996.

143

Bibliography

[36] The SANS Institute. The twenty most critical internet security
vulnerabilities. Version 6.01, Available online, http://www.sans.
org/top20/, November 2005.

[37] D. A. Wheeler. Secure programming for linux and unix howto.

[38] Dorothy E. Denning. Information warfare and security. Addison-
Wesley Longman Ltd., Essex, UK, UK, 1999.

[39] Greg Hoglund and Gary McGraw. Exploiting Software: how to
break code. Addison Wesley, 2004.

[40] Dixie B. Baker. Fortresses built upon sand. In Proc. of the
1996 Workshop on New Security Paradigms, pages 148–153. ACM
Press, 1996.

[41] K-2. Admmutate. In CanSecWest 2001 Conference, March
2001. the tool is available online at http://www.ktwo.ca/c/

ADMmutate-0.8.4.tar.gz.

[42] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and
D. Wolber. A network security monitor. In Proc. of the 1990
IEEE Symp. on Research in Security and Privacy, pages 296–304,
May 1990.

[43] P. A. Porras and P. G. Neumann. EMERALD: Event monitor-
ing enabling responses to anomalous live disturbances. In Proc.
20th NIST-NCSC Nat’l Information Systems Security Conf., pages
353–365, 1997.

[44] Tim Bass. Intrusion detection systems and multisensor data fu-
sion. Comm. of the ACM, 43(4):99–105, 2000.

[45] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi. Collaborative intrusion
detection systems (CIDS): A framework for accurate and efficient
IDS. In Proceedings of the 19th Annual Computer Security Appli-
cations Conference, December 2003.

[46] S. Snapp, J. Bretano, G. Dias, T. Goan, L. Heberlein, C. Ho,
K. Levitt, B. Mukherjee, S. Smaha, T. Grance, D. Teal, and
D. Mansur. Dids: Motivation, architecture and an early proto-
type. In Proc. of the 14th National Computer Security Conference,
pages 167–176, Washington, DC, October 1991.

144

Bibliography

[47] Z. Zhang, J. Li, C.N. Manikopoulos, J. Jorgenson, and J. Ucles.
HIDE: a hierarchical network intrusion detection system using sta-
tistical preprocessing and neural network classification. In Proceed-
ings of IEEE Workshop on Information Assurance and Security,
pages 85–90, West Point, 2001.

[48] Eugene H. Spafford and Diego Zamboni. Intrusion detection using
autonomous agents. Computer Networks, 34(4):547–570, October
2000.

[49] Jai Balasubramaniyan, Jose Omar Garcia-Fernandez, Eugene H.
Spafford, and Diego Zamboni. An architecture for intrusion detec-
tion using autonomous agents. Technical Report Coast TR 98-05,
Department of Computer Sciences, Purdue University, 1998.

[50] Kymie M. C. Tan, Kevin S. Killourhy, and Roy A Maxion. Under-
mining an anomaly-based intrusion detection system using com-
mon exploits. In Giovanni Vigna Andreas Wespi and Luca Deri,
editors, Fifth International Symposium on Recent Advances in In-
trusion Detection (RAID-2002), volume 2516 of Lecture Notes
in Computer Science, pages 54–73, Zurich, Switzerland, October
2002. Springer-Verlag.

[51] V. Paxson. Bro: A system for detecting network intruders in real-
time. Computer Networks, 31(23–24):2435–2463, Dec 1999.

[52] Simonetta Balsamo, Raif O. Onvural, and Vittoria De Nitto Per-
sone. Analysis of Queueing Networks with Blocking. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2001.

[53] Diego Catallo. Una metodologia per la valutazione delle
prestazioni di sistemi di intrusion detection. Master’s thesis, Po-
litecnico di Milano, 2004. in Italian.

[54] Stefano Zanero. My ids is better than yours... or is it ? In Blackhat
Federal 2006 Briefings, 2006.

[55] Fragroute. available online at URL http://www.monkey.org/
∼dugsong/fragroute/.

[56] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-
based Intrusion Detection Signatures Using Mutant Exploits. In
Proceedings of the ACM Conference on Computer and Communi-
cation Security (ACM CCS), pages 21–30, Washington, DC, Oc-
tober 2004.

145

Bibliography

[57] Thomas M. Mitchell. Machine Learning. McGraw-Hill Higher
Education, 1997.

[58] Dana H. Ballard. An introduction to natural computation. Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1997.

[59] Martin Roesch. Snort - lightweight intrusion detection for net-
works. In Proc. of LISA 99, 1999.

[60] Christopher Krügel and Thomas Toth. Using decision trees to
improve signature-based intrusion detection. In RAID, pages 173–
191, 2003.

[61] Marcus J. Ranum, Kent Landfield, Mike Stolarchuk, Mark
Sienkiewicz, Andrew Lambeth, and Eric Wall. Implementing a
generalized tool for network monitoring. In LISA’97.

[62] Robin Sommer and Vern Paxson. Enhancing byte-level network
intrusion detection signatures with context. In CCS ’03: Proceed-
ings of the 10th ACM conference on Computer and communica-
tions security, pages 262–271, New York, NY, USA, 2003. ACM
Press.

[63] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack
language for state-based intrusion detection. In Proceedings of the
ACM Workshop on Intrusion Detection, Atene, November 2000.

[64] Ludovic Me. Gassata, a genetic algorithm as an alternative tool for
security audit trails analysis. In Proceedings of RAID’98, Septem-
ber 1998.

[65] D. E. Denning. An intrusion-detection model. IEEE Transactions
on Software Engineering, SE-13(2):222–232, February 1987.

[66] H. S. Javits and A. Valdes. The NIDES statistical component:
description and justification. Technical report, SRI International,
March 1993.

[67] M. Theus and M. Schonlau. Intrusion detection based on struc-
tural zeroes. Statistical Computing & Graphics Newsletter, 9:12–
17, 1998.

[68] Mark Burgess, Hârek Haugerud, Sigmund Straumsnes, and Trond
Reitan. Measuring system normality. ACM Trans. Comput. Syst.,
20(2):125–160, 2002.

146

Bibliography

[69] N. Ye and Q. Chen. An anomaly detection technique based
on a chi-square statistic for detecting intrusions into informa-
tion systems. Quality and Reliability Engineering International,
17(2):105–112, 2001.

[70] Juan Carlos Galeano, Angélica Veloza-Suan, and Fabio A.
González. A comparative analysis of artificial immune net-
work models. In GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages 361–368, New
York, NY, USA, 2005. ACM Press.

[71] Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Com-
puter immunology. Commun. ACM, 40(10):88–96, 1997.

[72] Rebecca Gurley Bace. Intrusion detection. Macmillan Publishing
Co., Inc., Indianapolis, IN, USA, 2000.

[73] Steven A. Hofmeyr and Stephanie A. Forrest. Architecture for an
artificial immune system. Evol. Comput., 8(4):443–473, 2000.

[74] Xiaoshu Hang and Honghua Dai. Applying both positive and neg-
ative selection to supervised learning for anomaly detection. In
GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 345–352, New York, NY, USA,
2005. ACM Press.

[75] Marcus J. Ranum. artificial ignorance: how-to guide. Firewall
Wizards mailing list, available online at http://lists.insecure.
org/firewall-wizards/1997/Sep/0096.html, September 1997.

[76] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[77] Christian Kreibich and Jon Crowcroft. Honeycomb: creating in-
trusion detection signatures using honeypots. SIGCOMM Comput.
Commun. Rev., 34(1):51–56, 2004.

[78] Lance Spitzner. Honeypots: Catching the insider threat. In AC-
SAC ’03: Proceedings of the 19th Annual Computer Security Ap-
plications Conference, page 170, Washington, DC, USA, 2003.
IEEE Computer Society.

[79] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion
detection with neural networks. In Michael I. Jordan, Michael J.
Kearns, and Sara A. Solla, editors, Advances in Neural Informa-
tion Processing Systems, volume 10. The MIT Press, 1998.

147

Bibliography

[80] A. K. Gosh, J. Wanken, and F. Charron. Detecting anomalous and
unknown intrusions against programs. In ACSAC ’98: Proceedings
of the 14th Annual Computer Security Applications Conference,
page 259, Washington, DC, USA, 1998. IEEE Computer Society.

[81] J. Ryan, L. Meng-Jane, and R. Miikkulainen. Intrusion Detection
with Neural Networks, chapter 8. Mit Press, May 1998.

[82] H. Debar, M. Becker, and D. Siboni. A neural network component
for an intrusion detection system. In Proc. IEEE Symposium on
Research in Computer Security and Privacy, 1992.

[83] Wenke Lee and Wei Fan. Mining system audit data: opportunities
and challenges. ACM SIGMOD Rec., 30(4):35–44, 2001.

[84] Wenke Lee and Salvatore Stolfo. Data mining approaches for in-
trusion detection. In Proc. of the 7th USENIX Security Symp.,
San Antonio, TX, 1998.

[85] T.D. Lane. Machine Learning Techniques For The Computer Se-
curity Domain Of Anomaly Detection. PhD thesis, Purdue Uni-
versity, 1998.

[86] L. Me. Genetic algorithms, a biologically inspired approach for se-
curity audit trails analysis. In 1996 IEEE Symposium on Security
and Privacy, Oakland, CA, May 1996. short paper.

[87] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy,
Washington, DC, USA, 1996. IEEE Computer Society.

[88] Calvin Ko, George Fink, and Karl Levitt. Automated detection
of vulnerabilities in privileged programs by execution monitoring.
In Proceedings of the 10th Annual Computer Security Applications
Conference, volume XIII, pages 134–144. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1994.

[89] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and Rajesh
Cherukuri. Self-nonself discrimination in a computer. In SP ’94:
Proceedings of the 1994 IEEE Symposium on Security and Privacy,
page 202, Washington, DC, USA, 1994. IEEE Computer Society.

[90] J. B. D. Cabrera, L. Lewis, and R.K. Mehara. Detection and clas-
sification of intrusion and faults using sequences of system calls.
ACM SIGMOD Record, 30(4), 2001.

148

Bibliography

[91] G. Casas-Garriga, P. Dı́az, and J.L. Balcázar. ISSA: An integrated
system for sequence analysis. Technical Report DELIS-TR-0103,
Universitat Paderborn, 2005.

[92] Intrusion Detection Using Sequences of System Calls. S. hofmeyr
and s. forrest and a. somayaji. Journal of Computer Security,
6:151–180, 1998.

[93] Anil Somayaji and Stephanie Forrest. Automated response using
system–call delays. In Proceedings of the 9th USENIX Security
Symposium, Denver, CO, August 2000.

[94] William W. Cohen. Fast effective rule induction. In Armand
Prieditis and Stuart Russell, editors, Proc. of the 12th Interna-
tional Conference on Machine Learning, pages 115–123, Tahoe
City, CA, Jul 1995. Morgan Kaufmann.

[95] Y. Chevaleyre, N. Bredeche, and J. Zucker. Learning rules from
multiple instance data : Issues and algorithms. In Proceed-
ings of the 9th International Conference on Information Process-
ing and Management of Uncertainty in Knowledge-Based Systems
(IPMU02), Annecy, France, 2002.

[96] Wei Fan, Matthew Miller, Salvatore J. Stolfo, Wenke Lee, and
Philip K. Chan. Using artificial anomalies to detect unknown and
known network intrusions. In ICDM, pages 123–130, 2001.

[97] N. Provos. Improving host security with system call policies. Tech-
nical Report 02-3, CITI, November 2002.

[98] Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven,
host-based intrusion detection system. ACM Trans. Inf. Syst. Se-
cur., 6(2):173–200, 2003.

[99] C. C. Michael and Anup Ghosh. Simple, state-based approaches to
program-based anomaly detection. ACM Trans. Inf. Syst. Secur.,
5(3):203–237, 2002.

[100] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program behav-
iors. In Proceedings of the 2001 IEEE Symposium on Security and
Privacy, Washington, DC, USA, 2001. IEEE Computer Society.

[101] David Wagner and Drew Dean. Intrusion detection via static anal-
ysis. In SP ’01: Proceedings of the 2001 IEEE Symposium on Se-

149

Bibliography

curity and Privacy, page 156, Washington, DC, USA, 2001. IEEE
Computer Society.

[102] Dirk Ourston, Sara Matzner, William Stump, and Bryan Hopkins.
Applications of hidden markov models to detecting multi-stage
network attacks. In HICSS, page 334, 2003.

[103] Dit-Yan Yeung and Yuxin Ding. Host-based intrusion detection
using dynamic and static behavioral models. Pattern Recognition,
36:229–243, January 2003.

[104] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmut-
ter. Detecting intrusions using system calls: Alternative data mod-
els. pages 133–145, 1999.

[105] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learn-
ing program behavior profiles for intrusion detection. In Proceed-
ings 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, pages 51–62, April 1999.

[106] David Wagner and Paolo Soto. Mimicry attacks on host-based
intrusion detection systems. In Proceedings of the 9th ACM con-
ference on Computer and communications security, pages 255–264,
New York, NY, USA, 2002. ACM Press.

[107] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection
of Anomalous System Call Arguments. In Proceedings of the 2003
European Symposium on Research in Computer Security, Gjvik,
Norway, October 2003.

[108] G. Tandon and P. Chan. Learning rules from system call argu-
ments and sequences for anomaly detection. In ICDM Workshop
on Data Mining for Computer Security (DMSEC), pages 20–29,
2003.

[109] Dave Aitel. Resilience. Available online at http://www.

immunitysec.com/resources-papers.shtml, February 2006.

[110] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang,
and S. Zhou. Specification-based anomaly detection: a new ap-
proach for detecting network intrusions. In CCS ’02: Proceedings
of the 9th ACM conference on Computer and communications se-
curity, pages 265–274, New York, NY, USA, 2002. ACM Press.

150

Bibliography

[111] Wenke Lee, Salvatore Stolfo, and Kui Mok. Mining in a data-
flow environment: Experience in network intrusion detection. In
Surajit Chaudhuri and David Madigan, editors, Proc. of the 5th
Int’l Conf. on Knowledge Discovery and Data Mining, pages 114–
124, 1999.

[112] Daniel Barbará, Julia Couto, Sushil Jajodia, and Ningning
Wu. Adam: a testbed for exploring the use of data mining in
intrusion detection. SIGMOD Rec., 30(4):15–24, 2001.

[113] D. Barbar, N. Wu, and S. Jajodia. Detecting novel network in-
trusions using bayes estimators. In Proceedings of the First SIAM
International Conference on Data Mining, 2001.

[114] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining
anomalies using traffic feature distributions. In SIGCOMM ’05:
Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, pages
217–228, New York, NY, USA, 2005. ACM Press.

[115] Debra Anderson, Teresa F. Lunt, Harold Javitz, Ann Tamaru,
and Alfonso Valdes. Detecting unusual program behavior using
the statistical component of the next-generation intrusion detec-
tion expert system (nides). Technical report, Computer Science
Laboratory SRI-CSL, May 1995.

[116] Paul Barford, Jeffery Kline, David Plonka, and Amos Ron. A sig-
nal analysis of network traffic anomalies. In IMW ’02: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment,
pages 71–82, New York, NY, USA, 2002. ACM Press.

[117] M.V. Mahoney and P.K. Chan. Detecting novel attacks by iden-
tifying anomalous network packet headers. Technical Report CS-
2001-2, Florida Institute of Technology, 2001.

[118] Matthew V. Mahoney and Philip K. Chan. Learning nonstationary
models of normal network traffic for detecting novel attacks. In
KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 376–
385, New York, NY, USA, 2002. ACM Press.

[119] Dit-Yan Yeung and Calvin Chow. Parzen-Window network intru-
sion detectors. In Proc. of the 16th Int’l Conf. on Pattern Recog-
nition, volume 4, pages 385–388, aug 2002.

151

Bibliography

[120] P. Lichodzijewski, A.N. Zincir-Heywood, and M.I. Heywood. Dy-
namic intrusion detection using self organizing maps. In 14th An-
nual Canadian Information Technology Security Symp., May 2002.

[121] K. Labib and R. Vemuri. NSOM: A real-time network-based intru-
sion detection system using self-organizing maps. Technical report,
Dept. of Applied Science, University of California, Davis, 2002.

[122] L. Girardin. An eye on network intruder-administrator shootouts.
In Proc. of the Workshop on Intrusion Detection and Network
Monitoring, pages 19–28, Berkeley, CA, USA, 1999. USENIX As-
sociation.

[123] M. Ramadas, S. Osterman, and B. Tjaden. Detecting anoma-
lous network traffic with self-organizing maps. In Giovanni Vigna,
Christopher Kruegel, and Erland Jonsson, editors, Proceedings of
the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), volume 2820, pages 36–54, Pittsburgh,
PA, USA, September 2003. Springer-Verlag.

[124] M. Ramadas. Detecting anomalous network traffic with self-
organizing maps. Master’s thesis, Ohio University, March 2003.

[125] L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Ku-
mar, and P. Dokas. Next Generation Data Mining, chapter 3. MIT
Press, 2004.

[126] Kenji Yamanishi, Jun ichi Takeuchi, Graham J. Williams, and
Peter Milne. On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms. In Proc. of the
6th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pages 320–324, Aug 2000.

[127] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based net-
work intrusion detection. In RAID Symposium, September 2004.

[128] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady. Multiple self-
organizing maps for intrusion detection. In Proceedings of the
23rd National Information Systems Security Conference, Balti-
more, 2000.

[129] Matthew V. Mahoney and Philip K. Chan. Learning rules for
anomaly detection of hostile network traffic. In Proc. of the 3rd
IEEE Int’l Conf. on Data Mining, page 601, 2003.

152

Bibliography

[130] J. Snyder. Taking aim: Target-based IDSes squelch network noise
to pinpoint the alerts you really care about. Information Security
Magazine, January 2004.

[131] M. V. Mahoney and P. K. Chan. A machine learning approach to
detecting attacks by identifying anomalies in network traffic. Tech-
nical Report CS-2002-08, Florida Institute of Technology, 2002.

[132] M. V. Mahoney. Network traffic anomaly detection based on
packet bytes. In Proceedings of the 19th Annual ACM Symposium
on Applied Computing, 2003.

[133] Matthew V. Mahoney and Philip K. Chan. Learning nonstationary
models of normal network traffic for detecting novel attacks. In
KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 376–
385, New York, NY, USA, 2002. ACM Press.

[134] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning
techniques for an intrusion detection system. In Proc. of the 2004
ACM Symposium on Applied Computing, pages 412–419. ACM
Press, 2004.

[135] K.M.C. Tan and B.S. Collie. Detection and classification of
TCP/IP network services. In Proc. of the Computer Security Ap-
plications Conf., pages 99–107, 1997.

[136] Stefano Zanero. Analyzing tcp traffic patterns using self organizing
maps. volume 3617 of Lecture Notes in Computer Science, pages
83–90, Cagliari, Italy, September 2005. Springer.

[137] J. A. Hartigan. Clustering Algorithms. Wiley, 1975.

[138] J. Han and M. Kamber. Data Mining: concepts and techniques.
Morgan-Kauffman, 2000.

[139] D. Hawkins. Identification of Outliers. Chapman and Hall, Lon-
don, 1980.

[140] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Surv., 31(3):264–323, 1999.

[141] D. Boley, V. Borst, and M. Gini. An unsupervised clustering tool
for unstructured data. In IJCAI 99 Int’l Joint Conf. on Artificial
Intelligence, Stockholm, Aug 1999.

153

Bibliography

[142] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 3
edition, 2001.

[143] Sergio Savaresi, Daniel L. Boley, Sergio Bittanti, and Giovanna
Gazzaniga. Cluster selection in divisive clustering algorithms. In
Proc. of the 2nd SIAM Int’l Conf. on Data Mining, pages 299–314,
2002.

[144] R. Larsen. Lanczos bidiagonalization with partial reorthogonaliza-
tion. PhD thesis, Dept. Computer Science, University of Aarhus,
DK-8000 Aarhus C, Denmark, Oct 1998.

[145] Stefano Zanero. Improving the principal direction divisive parti-
tioning algorithm. Technical Report TR-2006-02, Dipartimento di
Elettronica e Informazione, Politecnico di Milano, January 2006.

[146] A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clus-
tering algorithm. Pattern Recognition, 36(2), 2003.

[147] Sergio Savaresi and Daniel L. Boley. On the performance of bi-
secting k-means and PDDP. In Proc. of the 1st SIAM Conf. on
Data Mining, pages 1–14, 2001.

[148] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[149] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Mono-
graphs on Statistics and Applied Probability. Chapman & Hall,
1995.

[150] I. T. Jolliffe. Principal Component Analysis. Springer Verlag,
1986.

[151] S. Zanero. Improving self organizing map performance for network
intrusion detection. In SDM 2005 Workshop on “Clustering High
Dimensional Data and its Applications”, 2005.

[152] S. McCreary and K. Claffy. Trends in wide area ip traffic patterns
- a view from ames internet exchange. In Proc. of ITC’2000, 2000.

[153] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri
Shaft. When is “nearest neighbor” meaningful? Lecture Notes in
Computer Science, 1540:217–235, 1999.

154

Bibliography

[154] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim.
What is the nearest neighbor in high dimensional spaces? In The
VLDB Journal, pages 506–515, 2000.

[155] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim.
On the surprising behavior of distance metrics in high dimensional
space. Lecture Notes in Computer Science, 1973, 2001.

[156] Charu C. Aggarwal. On effective classification of strings with
wavelets. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 163–172, New York, NY, USA, 2002. ACM Press.

[157] The exploittree repository. available online, http://www.

securityforest.com.

[158] The metasploit framework. available online, http://www.

metasploit.com.

[159] J. Frank. Artificial intelligence and intrusion detection: Current
and future directions. In Proc. of the 17th Nat’l Computer Security
Conf., Baltimore, MD, 1994.

[160] Victoria Hodge and Jim Austin. A survey of outlier detection
methodologies. Artif. Intell. Rev., 22(2):85–126, 2004.

[161] Jessica Lin, Eamonn Keogh, and Wagner Truppel. Clustering of
streaming time series is meaningless. In DMKD ’03: Proceedings of
the 8th ACM SIGMOD workshop on Research issues in data min-
ing and knowledge discovery, pages 56–65, New York, NY, USA,
2003. ACM Press.

[162] T. Lane and C.E. Brodley. Temporal sequence learning and data
reduction for anomaly detection. ACM Trans. on Information and
System Security, 2(3):295–331, 1999.

[163] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, A. Biliris, H. V. Ja-
gadish, and C. Faloutsos. Online data mining for co-evolving time
sequences. In Proceedings of the IEEE 16th International Confer-
ence on Data Engineering, pages 13–22, 2000.

[164] Sergey Kirshner. Modeling of multivariate time series using hidden
Markov models. PhD thesis, Department of Computer Science,
University of California, Irvine, March 2005.

155

Bibliography

[165] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, New
Jersey, 1980.

[166] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos.
Streaming pattern discovery in multiple time-series. In VLDB ’05:
Proceedings of the 31st international conference on Very large data
bases, pages 697–708. VLDB Endowment, 2005.

[167] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. Online
unsupervised outlier detection using finite mixtures with discount-
ing learning algorithms. Knowledge Discovery and Data Mining,
8(3):275–300, 2004.

[168] Kenji Yamanishi and Jun ichi Takeuchi. Discovering outlier filter-
ing rules from unlabeled data: combining a supervised learner with
an unsupervised learner. In KDD ’01: Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 389–394, New York, NY, USA, 2001. ACM
Press.

[169] Isabelle Guyon and Andr Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3:1157–
1182, 2003.

[170] S.K. Pal and P. Mitra. Pattern Recognition Algorithms for Data
Mining: Scalability, Knowledge Discovery, and Soft Granular
Computing. Chapman Hall/CRC Press, Boca Raton, FL, May
2004.

[171] Hyunjin Yoon and Kiyoung Yang. Feature subset selection and
feature ranking for multivariate time series. IEEE Transac-
tions on Knowledge and Data Engineering, 17(9):1186–1198, 2005.
Member-Cyrus Shahabi.

[172] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan
Korba, and Kumar Das. Analysis and results of the 1999 DARPA
off-line intrusion detection evaluation. In Proceedings of the Third
International Workshop on Recent Advances in Intrusion Detec-
tion, pages 162–182, London, UK, 2000. Springer-Verlag.

[173] Darpa intrusion detection evaluation. available online, http://
www.ll.mit.edu/IST/ideval/data/dataindex.html.

[174] KDD Cup ’99 Dataset. available online at http://kdd.ics.uci.
edu/databases/kddcup99/kddcu99.html.

156

Bibliography

[175] Christopher Kruegel, Thomas Toth, and Engin Kirda. Service spe-
cific anomaly detection for network intrusion detection. In SAC
’02: Proceedings of the 2002 ACM symposium on Applied comput-
ing, pages 201–208, New York, NY, USA, 2002. ACM Press.

[176] Y. Tang and S. Chen. Defending against internet worms: a
signature-based approach. In Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM 2005), volume 2, pages 1384–1394. IEEE, March
2005.

[177] The shmooo group capture the ctf project. available online, http:
//www.shmoo.com/cctf/.

[178] K. Kendall. A database of computer attacks for the evaluation of
intrusion detection systems. Master’s thesis, Massachussets Insti-
tute of Technology, 1999.

[179] John McHugh. Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system evaluations
as performed by lincoln laboratory. ACM Trans. on Information
and System Security, 3(4):262–294, 2000.

[180] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA /
Lincoln laboratory evaluation data for network anomaly detection.
In Proceedings of the 6th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID 2003), pages 220–237, Pitts-
burgh, PA, USA, September 2003.

[181] Stefano Zanero. Behavioral intrusion detection. In Cevdet
Aykanat, Tugrul Dayar, and Ibrahim Korpeoglu, editors, Proceed-
ings of ISCIS 2004, volume 3280 of Lecture Notes in Computer
Science, pages 657–666, Kemer-Antalya, Turkey, October 2004.
Springer.

[182] P. Martin and P. Bateson. Measuring Behaviour: An Introductory
Guide. Cambridge University Press, Cambridge, UK, 2 edition,
1993.

[183] K. Z. Lorenz. The comparative method in studying innate be-
haviour patterns. In Symposia of the Society for Experimental
Biology, page 226, 1950.

[184] N. Tinbergen. The hierarchical organization of nervous mecha-
nisms underlying instinctive behaviour. In Symposium for the So-
ciety for Experimental Biology, pages 305–312, 1950.

157

Bibliography

[185] Mark Humphrys. Action selection methods using reinforcement
learning. In Pattie Maes et al., editor, From Animals to Animats
4: Proc. of the 4th Int’l Conference on Simulation of Adaptive
Behavior, pages 135–144, 1996.

[186] A. K. Seth. Evolving action selection and selective attention with-
out actions, attention or selection. In R. Pfeifer, B. Blumberg,
J. Meyer, and S. Wilson, editors, Proc. of SAB’98, pages 139–147.
MIT Press, 1998.

[187] G. W. Barlow. Ethological units of behavior, pages 217–237.
Chicago University Press, Chicago, 1968.

[188] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and
intrusion detection. In Proceedings of the 14th IEEE Workshop
on Computer Security Foundations (CSFW’01), pages 206–219,
Washington, DC, USA, June 2001. IEEE Computer Society.

[189] Wen-Hua Ju and Y. Vardi. A hybrid high-order Markov chain
model for computer intrusion detection. J. of Computational and
Graphical Statistics, 10:277–295, 2001.

[190] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. In Proc. of the IEEE, vol-
ume 77, pages 257–286, 1989.

[191] L. E. Baum and J. A. Eagon. An inequality with applications
to statistical prediction for functions of Markov process and to a
model of ecology. Bull. American Math. Soc., pages 360–363, 1967.

[192] N. Merhav, M. Gutman, and J. Ziv. On the estimation of the
order of a Markov chain and universal data compression. IEEE
Trans. Inform. Theory, 35:1014–1019, Sep 1989.

[193] P. Haccou and E. Meelis. Statistical analysis of behavioural data.
An approach based on timestructured models. Oxford university
press, 1992.

[194] Yiu-Ming Cheung and Lei Xu. An RPCL-based approach for
Markov model identification with unknown state number. IEEE
Signal Processing Letters, 7:284–287, Oct 2000.

[195] L. Baum. An inequality and associated maximization technique in
statistical estimation for probalistic functions of Markov processes.
Inequalities, pages 1–8, 1972.

158

Bibliography

[196] J. B. Moore and V. Krishnamurthy. On-line estimation of hidden
Markov model based on the Kullback-Leibler information measure.
IEEE Trans. on Signal Processing, pages 2557–2573, August 1993.

[197] B.-H. Juang and L. Rabiner. A probabilistic distance measure
for hidden Markov models. AT&T Technical Journal, 64:391–408,
1985.

[198] Andreas Stolcke and Stephen Omohundro. Hidden Markov Model
induction by bayesian model merging. In Advances in Neural In-
formation Processing Systems, volume 5, pages 11–18. Morgan
Kaufmann, 1993.

[199] A. Stolcke and S. M. Omohundro. Best-first model merging for
hidden Markov model induction. Technical Report TR-94-003,
1947 Center Street, Berkeley, CA, 1994.

[200] I. Ren J.A. te Boekhorst. Freeing machines from Cartesian chains.
In Proceedings of the 4th International Conference on Cognitive
Technology, number 2117 in LNCS, pages 95–108. Springer-Verlag,
Aug 2001.

[201] Andreas Stolcke and Stephen M. Omohundro. Inducing probabilis-
tic grammars by bayesian model merging. In Proceedings of the
Second International Colloquium on Grammatical Inference and
Applications, pages 106–118, London, UK, 1994. Springer-Verlag.

[202] LibAnomaly Project. available online at http://www.cs.ucsb.

edu/∼rsg/libAnomaly.

[203] Gene H. Golub and Charles F. Van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996.

[204] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection
via system call traces. IEEE Softw., 14(5):35–42, 1997.

[205] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and
Barton P. Miller. Environment-sensitive intrusion detection. In
RAID, pages 185–206, 2005.

[206] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers,
and intrusion detection. In CSFW ’01: Proceedings of the 14th
IEEE Workshop on Computer Security Foundations, page 206,
Washington, DC, USA, 2001. IEEE Computer Society.

159

Bibliography

160

Index

0-Day, 25, 29

A.A.A., 8
Accounting, 8
ACL, 10
Action Pattern, 89
Action Selection, 88
ADAM, 40

Adaptation, 3
ADMmutate, 25
Anomaly Detection, 2, 23, 35–42
Architectural Security, 16
Artificial Ignorance, 36
Assurance, 10
Attack Method, 19
Attack Taxonomy, 17
Attack Tool, 19
Attackers, 18

Authentication, 8
Authorization, 8
Availability, 7
Average Linkage, 117

Baum-Welch Algorithm, 92

Bayesian Learning, 93
Behavior Detection, 87
Behavioral Pattern, 89
Bell-LaPadula, 9
BIC, 94
BRO, 34
Bubble Proximity Function, 54
Business Continuity, 16

C.I.A. paradigm, 7
Capabilities, 10

Character Distribution, 98, 114
Clustering, 40, 46, 49–50, 116
Competitive Learning, 54

Complete Linkage, 117
Computer Security, 7
Confidentiality, 7
Counter Attacks, 33
CTF, 83
Curse of Dimensionality, 57

DAC, 9
DARPA, 78, 83, 102, 132
DARPA Dataset, 62
Data Mining, 37, 40
Decoding Problem, 91
DEFCON, 83
Denial of Service, 32
Detection Rate, 43

Disaster Recovery, 16
Discounting Learning, 42, 69, 72
Display, 89
Distance, 61, 116, 117, 122

Ethogram, 90

Ethology, 87
Euclidean Distance, 62
Evaluation Problem, 91, 92
Evasion Attacks, 27, 31
External Threat, 18

False Negative, 42
False Positive, 42
False Positive Rate, 43
FAP, 89
Feature Selection, 77

161

Index

File Alteration Monitoring, 36
File Name, 124
Finite State Automata, 38
Firewall, 16
Fixed Action Pattern, 89
Flexibility, 30
Fragmentation, 31
Full Disclosure, 12
Fuzzing, 12

Gaussian Proximity Function, 54
GID, 127

Hellinger Distance, 76
Hidden Markov Model, 38, 70,

91, 99, 130
Hierarchical Clustering, 116, 117
Honeypot, 18, 37
Host Based IDS, 26, 35–39
Hybrid IDS, 27

IDES, 35
IDEVAL, 62, 78, 83, 102, 132
IDS Evaluation, 30, 42, 83
Immune Systems, 36
Information Security, 7
Input Space, 53
Insertion Attacks, 27, 31
Instance Based Learning, 69
Integrity, 7
Intentional Behavior, 88
Internal Threat, 18
Intrusion Prevention System (IPS),

24, 32, 38

K-Means, 49, 52
Knowledge Base, 24

Learning Problem, 91, 92
LERAD, 39, 69
LibAnomaly, 96, 97
Local Attack, 20

MAC, 9

Machine Learning, 33
Manhattan Distance, 62
MAP, 89
Map Space, 53
Markov Chain, 91, 116
Markov Model, 91
MDL, 94
MDS, 57
Metrics, 61, 116, 122
Mimicry Attack, 39
MINDS, 41
Misuse Detection, 2, 24, 34
Modal Action Pattern, 89
Model Merging, 93
Motivation, 88
Multivariate Time Series, 68
MUSCLES, 69, 70

Nessus, 50
NETAD, 69
Network Based IDS, 27, 39–42,

45
Neural Network, 37
NFR, 34
NIDES, 35, 40
Non-contextual Alert, 42
Non-informative Prior Criterion,

93
NOP sled, 26
NSOM, 40

Ordering Phase, 56
Outlier, 3, 49, 68

Packet Loss, 30
Packet Payload, 45
Parzen Window, 40, 69
Path Name, 124
PAYL, 42, 80
Payload Clustering, 48
PCA, 57
PDDP, 49, 52
PHAD, 40, 69

162

Index

Polymorphism, 25

Principal Component Analysis,
57

Principal Direction Partitioning,
49

Prior Criterion, 93

Privilege Escalation, 20

Protocol Anomaly Detection, 39

Proximity Function, 54

RBAC, 9

Reactivity, 32

Receiver Operating Characteris-
tic, 43

Recovery Point Objective, 17

Recovery Time Objective, 17

Remote Attack, 20

Risk, 13

ROC, 43

Rolling Time Window, 68

Rooting, 20

RPO, 17

RTO, 17

Rule Induction, 38

Scalability, 30

Script Kid, 18, 26

SDEM, 73

SDLE, 72

Secure Design, 15

Security Policy, 15

Self Organizing Map (SOM), 40,
42, 49, 50, 53, 57

Semantic Drift, 37

Sequence Correlation, 116

Signature, 24, 34

Single Linkage, 117

SmartSifter, 42, 72, 78, 79

Snort, 34

Social Engineering, 14

SOM Training, 54

SPIRIT, 71

SSL communications, 27
Statistical IDS, 35, 40
STATL, 34
String Length, 98, 115
Structural Inference, 99, 114
Supervised Learning, 33, 37, 40
Survivability, 29
Syscall, 38, 96, 102
SyscallAnomaly, 100, 102
System Call, 38, 90, 96, 102
System Call Arguments, 39

Tamper Evidence, 2
Targets, 18
Threat, 13
Throughput, 30
Time Series, 68
Token Search, 100, 115
Tripwire, 36
True Negative, 42
True Positive, 42
Tuning Phase, 56
Two-tier Architecture, 46

UCSB, 83
UID, 127
Unsupervised Learning, 2, 3, 33,

38, 40
Usability, 30
User Behavior, 87

Vulnerability, 11, 13, 19
Vulnerability Testing, 12

Whitelisting, 36

Zero-Day, 25, 29

163

