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ABSTRACT 
 
Smart Cards are often touted as “secure” portable storage devices. A complete, high-level design 
metodology has been proposed for embedded information systems based on smart card devices. 
However, this metodology takes as granted that informations stored on the card will be really 
securely stored, and access control will be correctly maintained. Unfortunately, standards and 
specifications, created by hardware and software vendors for both the card hardware and the micro 
operating system which runs it have been repeatedly proven not as secure as they are commonly 
supposed to be. 
 
In this paper we try to analyze the faults in existing standards and implementations of content 
security for smart card embedded information systems, and we try to suggest possible ways (both 
hardware and software) to prevent security leaks. This paper does not provide breaking news, but 
rather tries to sum up the known techniquest to attack smart card devices. 
 
1 SMART CARD CONCEPTS 

1.1 CARD TYPES. WHAT IS SMART ? 
 
The International Organization for Standardization (ISO) standard 78101 "Identification Cards – 
Physical Characteristics" defines physical properties such as flexibility, temperature resistance, and 
dimensions for three different card formats (ID-1, ID-2, and ID-3). 
 
There are different types of ID-1 format cards, each specified by a different substandard2: 
 
Embossed cards: embossing allows for textual information or designs on the card to be transferred 
to paper by using a simple and inexpensive device. ISO 78113 specifies the embossed marks, 
covering their form, size, embossing height, and positioning. Transfer of information via embossing 
may seem primitive, but the simplicity of the system has made worldwide proliferation possible.  
 
Magnetic Stripe:  the primary advantage that magnetic stripe technology offers over embossing is 
a reduction in the flood of paper documents. Parts 2, 4, and 5 of ISO 7811 specify the properties of 
the magnetic stripe, coding techniques, and positioning. The stripe’s storage capacity is about 1000 
bits and anyone with the appropriate read/write device can view or alter the data.  
 



Integrated Circuit cards (smart cards): these are the newest and most clever additions to the ID-1 
family, and they also follow the details laid down in the ISO 78164 series. These types of cards 
allow far greater orders of magnitude in terms of data storage – cards with over 20 Kbytes of 
memory are currently available. Also, and perhaps most important, the stored data can be protected 
against unauthorized access and tampering. Memory functions such as reading, writing, and erasing 
can be linked to specific conditions, controlled by both hardware and software. Another advantage 
of smartcards over magnetic stripe cards is that they are more reliable and have longer expected 
lifetimes. 
 
Memory Cards: though often also referred to as smartcards, memory cards are typically much less 
expensive and much less functional than microprocessor cards. They contain EEPROM and ROM 
memory, as well as some address and security logic. In the simplest designs, logic exists to prevent 
writing and erasing of the data. More complex designs allow for memory read access to be 
restricted. Since they cannot directly manipulate data they are dependent on the card reader (also 
known as the card-accepting device) for their processing and are suitable for uses where the card 
performs a fixed operation. Typical memory card applications are pre-paid telephone cards and 
health insurance cards.  
 
Contactless Smartcards: though the reliability of smartcard contacts has improved to very 
acceptable levels over the years, contacts are one of the most frequent failure points any 
electromechanical system due to dirt, wear, etc. The contactless card solves this problem and also 
provides the issuer an interesting range of new possibilities during use. Cards need no longer be 
inserted into a reader, which could improve end user acceptance. No chip contacts are visible on the 
surface of the card so that card graphics can express more freedom. Still, despite these benefits, 
contactless cards have not yet seen wide acceptance. The cost is higher and not enough experience 
has been gained to make the technology reliable. Nevertheless, this elegant solution will likely have 
its day in the sun at some time in the future.  
 
Optical Memory Cards: ISO/IEC standards 116935 and 116946 define standards for optical 
memory cards. These cards look like a card with a piece of a CD glued on top - which is basically 
what they are. They can carry many megabytes of data, but can only be written once and never 
erased with today’s technology. Today, these cards have no processor in them (although this is 
coming in the near future). While the cards are comparable in price to chip cards, the card read and 
write devices use non-standard protocols and are still very expensive. However such cards may find 
use in applications such as health care where large amounts of data must be stored. 
 
 

 Maximum memory 
capacity (nominal)  

Type of on-
board CPU  

 Card cost  Cost of reader, 
software, connections  

Magnetic-stripe 
cards  

140 bytes  None $0.20 - $0.75  $750  

Integrated circuit 
memory cards  

1 Kbyte  None $1 - $2.50  $500  

Integrated circuit 
processor cards  
(“Smart cards”) 

8 Kbytes  8-bit CPU  
(16 o 32 bit in  
the near future) 

$7-$15  $500  

Optical Memory 
Cards  

2.8 - 4.9 Mbyte None $7 - $12  $3,500 - $4,000  

 

1.2 SMART CARD BASICS 
 



Integrated Circuit Cards have conventionally come to be known as "Smart cards". A smart card is a 
card that is embedded with either a microprocessor and a memory chip or only a memory chip with 
non-programmable logic. As we will see, this simple and somehow strange structure offers a bunch 
of functionalities difficult to obtain otherwise. 
 
The microprocessor card can add, delete, and otherwise manipulate information on the card, while a 
memory-chip card (for example, pre-paid phone cards) can only undertake a pre-defined operation.  
 
Smart cards, unlike magnetic stripe cards, can carry all necessary functions and information on the 
card. Therefore, they do not require access to remote databases at the time of the transaction.  
 
A typical smartcard consists of an 8-bit microprocessor running at approximately 5 MHz with 
ROM, EEPROM and RAM, together with serial input and output, all in a single chip that is 
mounted on a plastic carrier. The operating system is typically stored in ROM, the CPU uses RAM 
as its working memory, and most of the data is stored in EEPROM.  
 
A rule of thumb for smartcard silicon is that RAM requires four times as much space as EEPROM, 
which in turn requires four times as much space as ROM. There are various smart card chipset. The 
most common chipsets mount 32 kbytes of ROM, and either 32 kbytes of EEPROM with 1 Kbyte 
RAM or 16 Kbytes of EEPROM with 2 Kbytes of RAM. This gives them the equivalent processing 
power of the original IBM-XT computer, albeit with slightly less memory capacity.  
 
In addition, most smart cards embed a cryptographic coprocessor. Because the common asymmetric 
cryptographic algorithms of the day (such as RSA) require very large integer math calculations, an 
8 bit microprocessor with very little RAM can take on the order of several minutes to perform a 
1024 bit private key operation. However, if a cryptographic coprocessor is added to the architecture, 
the time required for this same operation is reduced to around a few hundred microseconds. The 
coprocessors include additional arithmetic units developed specifically for large integer math and 
fast exponentiation. There is a drawback, however, and it is the cost. The addition of a 
cryptographic coprocessor can increase the cost of today’s smartcards by 50% to 100%. These cost 
increases will likely diminish as coprocessors become more widespread.  
 
Smart cards are passive devices, which means that to function a smart card needs to be inserted into 
a reader connected to a computer, or an integrated smart terminal. These devices are usually known 
as CAD (Card Acceptance Device), and come in many kind of shapes: readers integrated into a 
vending machine, handheld battery-operated readers with a small LCD screen, readers integrated 
into a GSM mobile phone, or attached to a personal computer by a variety of interfaces. 
Mechanically, readers have various options including: whether the user must insert/remove the card 
versus automated insertion/ejection mechanism, sliding contacts versus landing contacts, and 
provisions for displays and keystroke entry. Electrically, the reader must conform to the ISO/IEC 
7816-34 standard. 
 
The CAD offers power for the smartcard chip, and an interface for communication, which is 
bidirectional and half-duplex (one-way at a time). The serial I/O interface usually consists of a 
single register, through which the data is transferred in a half duplex manner, bit by bit. Though the 
chip can be thought of as a tiny computer, the external terminal must supply the voltage, ground, 
and clock. It could also be important to remember that, though commonly referred to as “smartcard 
readers”, all smartcard enabled terminals, by definition, have the ability to read and write as long as 
the smartcard supports it and the proper access conditions have been fulfilled 
 
 



There are standards for data transfer format, CAD specifications, and chipset interface 
specifications. You may refer to ISO 78164 standard (based on ID-1 type cards, as specified by 
ISO7810 standard), which has originated ETSI, EMV and Open Card7 standards. These standards 
have been widely adopted, leading to interoperability of various cards and products. 
 
A smart card works in a black-box model: the CAD gives the card an input, this input is processed 
by the card chipset, and then an output is sent back to the CAD. The CAD itself cannot access 
directly the smart card EEPROM, RAM or ROM memories. 
 
Since data cannot be retrieved directly via the CAD, smart cards have been proposed as portable 
and secure data storage devices. In addition, their computing capabilities (expecially if integrated by 
the cryptogaphic co-processor) make them expecially suitable as private key storage devices for 
asymetric algorithms, since in this way private keys can be generated and stored on board the card, 
and never leave it. Encription and decription of data are performed on request by the card chipset 
itself. In this way, the user’s private key is kept secure and can not be eavesdropped. Thus, chip 
cards have been the main platform for holding a secure digital identity. 

1.3 PHYSICAL AND ELECTRICAL PROPERTIES 
 
As we already said, the physical size and shape of a smartcard is described in ISO 78101 and 
designated as ID-1. The dimensions are 85.6 mm by 54 mm, with a corner radius of 3.18 mm and a 
thickness of 0.76mm. ISO 78101 was created in 1985, so it did not address chip placement but 
instead addressed embossing, magnetic stripes, and so on. Smartcard chip placement is defined in 
ISO 7816-24, which is dated 1988. See figure for details: 
 

 
 
Card robustness requirements are specified in ISO 78101, 78138, and 78164 part 1. These 
specifications address such things as UV radiation, X-ray radiation, the card’s surface profile, 
mechanical robustness of card and contacts, electromagnetic susceptibility, electromagnetic 
discharges, and temperature resistance. ISO/IEC 103739 specifies the test methods for many of 
these requirements. 
 
The electrical specifications for smartcards are defined in ISO/IEC 7816 parts 2 and 3, and GSM 
11.1110. Most smartcards have eight contact fields on the front face, however, two of these are 
reserved for future use so some manufacturers produce cards with only six contact fields, which 
slightly reduces production costs.  



 
Electrical contacts are typically numbered C1 through C8 from top left to bottom right, as shown 
here both for 6 and 8 contact shapes: 

 
 
In the table we list for each contact a standard abbreviation and a short function description: 
 

POSITION ABBREV. FUNCTION 

C1 Vcc Supply Voltage 

C2 RST Reset 

C3 CLK Clock Frequency 

C4 RFU Reserved for future use 

C5 GND Ground 

C6 Vpp External programming voltage 

C7 I/O Serial input/output communications 

C8 RFU Reserved for future use 

 
The Vpp contact was used several years ago to supply voltage to EEPROMs for programming and 
erasing. However, with the advent of charge pumps that exist on the chip, the Vpp contact is rarely 
used today (see below for security implications of this change). The Vcc supply voltage is specified 
at 5 volts ± 10%. There is an industry push for smartcard standards to support 3 volt technology 
because all mobile phone components are available in a 3 volt configuration, and smartcards are the 
only remaining component which require a mobile phone to have a charge converter. It is 
theoretically possible to develop 3-volt smartcards, but interoperability with current 5-volt systems 
would be a problem. Nonetheless, a wider voltage range handling 3 to 5 volts will probably become 
mandatory in the near future.  
 

1.4 DATA TRANSMISSIONS 
 
All communications to and from the smartcard are carried out over the C7 contact. Thus, only one 
party can communicate at a time, whether it is the card or the terminal. This is termed "half-
duplex". Communication is always initiated by the terminal, which implies a type of client/server 
relationship between card and terminal.  
 
After a card is inserted into a terminal, it is powered up by the terminal, executes a power-on-reset, 
and sends an Answer to Reset (ATR) to the terminal. The ATR is parsed, various parameters are 
extracted, and the terminal then submits the initial instruction to the card. The card generates a reply 



and sends it back to the terminal. The client/server relationship continues in this manner until 
processing is completed and the card is removed from the terminal. 
 
The physical transmission layer is defined in ISO/IEC 7816-3. It defines the voltage level specifics 
which end up translating into the "0" and "1" bits. 
 
Logically, there are several different protocols for exchanging information in the client/server 
relationship. They are designated "T=" plus a number, as summarized here:  
 

PROTOCOL DESCRIPTION 

T = 0 Asynchronous, half-duplex, byte oriented, see ISO/IEC 7816-3  

T = 1  Asynchronous, half-duplex, block oriented, see ISO/IEC 7816-3, Adm.1 

T = 2  Asynchronous, full-duplex, block oriented, see ISO/IEC 10536-4  

T = 3  Full duplex, not yet covered  

T = 4  Asynchronous, half-duplex, byte oriented, (expansion of T = 0)  

T = 5 TO T = 13 Reserved for future use  

T = 14  For national functions, no ISO standard  

T = 15  Reserved for future use  

 
The two protocols most commonly seen are T=0 and T=1, T=0 being the most popular. A brief 
overview of the T=0 protocol is given below. The references contain more detailed information and 
descriptions of all the protocols. 
 
In the T=0 protocol, the terminal initiates communications by sending a 5 byte instruction header 
which includes a class byte (CLA), an instruction byte (INS), and three parameter bytes (P1, P2, 
and P3). This is followed optionally by a data section.  

 
Most commands are either incoming or outgoing from the card’s perspective and the P3 byte 
specifies the length of the data that will be incoming or outgoing. Error checking is handled 
exclusively by a parity bit appended to each transmitted byte. If the card correctly receives the 5 
bytes, it will return a one-byte acknowledgment equivalent to the received INS byte.  
 
If the terminal is sending more data (incoming command) it will send the number of bytes it 
specified in P3. Now the card has received the complete instruction and can process it and generate 
a response. All commands have a two-byte response code, SW1 and SW2, which reports success or 
an error condition. If a successful command must return additional bytes, the number of bytes is 
specified in the SW2 byte.  
 
In this case, the GET RESPONSE command is used, which is itself a 5-byte instruction conforming 
to the protocol. In the GET RESPONSE instruction, P3 will be equal to the number of bytes 
specified in the previous SW2 byte. GET RESPONSE is an outgoing command from the card’s 



point of view. The terminal and card communicate in this manner, using incoming or outgoing 
commands, until processing is complete. 

1.5 SMART CARD OPERATING SYSTEMS 
 
There’s a wide variety of operating systems designed for smart cards. They suffer most limitations 
common for embedded operating systems, in particular for size and performance. The size is 
typically between 3 and 24 Kbytes. The lower limit is that used by specialized applications and the 
upper limit by multi-application operating systems.  
 
Though typically only a few thousand bytes of program code, the operating system for the 
smartcard microprocessor must handle such tasks as: 
 

?? Data transmission over the bi-directional, serial terminal interface  
?? Loading, operating, and management of applications  
?? Execution control and Instruction processing  
?? Protected access to data  
?? Memory Management  
?? File Management  
?? Management and Execution of cryptographic algorithms  
 

Just like embedded operating systems, they do not need user interfaces or the ability to access 
external peripherals or storage media. 
 
There are four international standards that define typical smartcard instruction sets. More than 50 
instructions and their corresponding execution parameters are defined. Though found in four 
separate standards, the instructions are largely compatible. The specifications are GSM 11.11 
(prETS 300608), EN 726-311, ISO/IEC 7816-4, and the preliminary CEN standard prEN 154612.  
 
Instructions can be classified by function as follows:  

?? File selection 
?? File reading and writing 
?? File searching 
?? File operations 
?? Identification 
?? Authentication 
?? Cryptographic functions 
?? File management 
?? Instructions for electronic purses or credit cards 
?? Operating system completion 
?? Hardware testing 
?? Special instructions for specific applications 
?? Transmission protocol support 

 
Because smartcard memory space is so severely limited, not all standardized instructions and file 
structures can be generally implemented in all smartcard operating systems. For this reason, so-
called "Profiles" have been introduced in ISO 7816-4 and EN 726-3. A profile defines the minimum 
requirements for data structures and commands.  
 
For example, Profile O in ISO 7816-4 defines the following minimums: 



 

Transparent 

Linear Fixed 

Linear Variable 
Data Structures:  

Cyclic 

READ BINARY, UPDATE BINARY, no implicit selection and 
maximum length up to 256 bytes 

READ RECORD, UPDATE RECORD, without automatic 
selection 

APPEND RECORD 

SELECT FILE 

VERIFY 

INTERNAL AUTHENTICATE 

EXTERNAL AUTHENTICATE 

Commands: 

GET CHALLENGE 

 

1.5.1 JAVA CARDS 
 
One of the most common smart card operating environments (adopted by over the 95% of 
manufacturers) is Java. Java-enabled smart cards are  called Java Cards13. A complete discussion of 
the Java Card architecture is far beyond the scopes of this work. However, we will discuss it briefly 
to give an example of how a smart card OS could implement access to card databanks and access 
controls. 
 
Just as in the Java operating environment for computer systems, the JavaCard API enables a “Write 
Once, Run Anywhere” approach, by wrapping proprietary, vendor-dependant API and system calls 
into a common framework.  
 
The Java programming language and the Java Card API allow development using modern object-
oriented programming, instead of assembly language or the C programming language. Using OOP 
has obvious benefits for security, allowing the developer to encapsulate sensitive data and 
algorithms within objects, which have provable behaviour and are easier to test; this is obviously in 
addition to traditional benefits for time-to-market and maintainability. 
 
In addition, the Java community has developed a wide and strong base of knowledge on the security 
and safety issue, which can be leveraged when developing smart-card applications. 
 
As an additional security benefit the Java Card platform provides a secure execution environment 
with a “firewall” (beware: not in the traditional meaning) between different applications in the same 
card. This allows different applications on the same card to function separately and independently 
from each other as if they were on separate cards. We will see that this is a benefit against software-
based attack.  
 



In the last five years, products incorporating the Java Card platform have passed real-world security 
evaluations for major industries around the world. The Java Card platform is the leading platform 
for multi-application cards in mobile telephony. It is also the only platform that has passed security 
evaluations for issuance by all major financial payment associations. In  addition, it has passed 
security assessments by leading government authorities, including the US Department of Defense 
and the US National Security Agency. Java Card platforms have achieved compliance with FIPS 
140-1. 

1.6 CRYPTOGRAPHIC CAPABILITIES 
 
Current state of the art smartcards have sufficient cryptographic capabilities to support popular 
security applications and protocols. In spite of the increased cost, the benefits to computer and 
network security of including the cryptographic coprocessor are great, for it allows the private key 
never to leave the smartcard. As we’ll see in the following sections, this becomes a critical factor 
for operations such as digital signatures, authentication, and non-repudiation. Eventually, though, 
the need for a cryptographic coprocessor and its associated cost will likely go away. The basic 
processors could become powerful enough to perform the math-intensive operations, or other 
algorithms such as those based on elliptic curve technology could become popular. Elliptic curve 
algorithms provide strong security without the need for large integer math, but haven’t yet found 
their way into widespread use. 
 
However, we will better describe common capabilities found in the crypto-enabled smartcards from 
leading vendors.  
 
RSA signatures and verifications are supported with a choice of 512, 768, or 1024 bit keylengths. 
The algorithms typically use the Chinese Remainder Theorem (CRT) in order to speed up the 
processing. Even at the 1024 bit keylength, the time needed to perform a signature is typically under 
one second. Usually the EEPROM file that contains the private key is designed such that the 
sensitive key material never leaves the chip. Even the card holder can’t access the key material in 
this case. The usage of the private key is protected by the user’s PIN, so that possession of the card 
does not imply the ability to sign with the card. RSA’s PKCS#1 padding is implemented by some 
cards.  
 
Though smartcards have the ability to generate RSA keypairs, this can be very slow. Typical times 
needed for a 1024 bit RSA keypair range from 8 seconds to 3 minutes. The larger times violate the 
ISO specifications for communications timeout so specialized hardware or software is sometimes 
necessary. Also, the quality of the keypairs may not be extremely high. The lack of computing 
power implies a relatively weak random number source as well as relatively weak algorithms for 
selecting large prime numbers.  
 
The Digital Signature Algorithm (DSA) is less widely implemented than RSA. When it is 
implemented, it is typically found only at the 512 bit key length. 
 
DES and triple DES are commonly found in the leading smartcards. They usually have the option to 
be used in a Message Authentication Code (MAC) function. However, because the serial interface 
of a smartcard has a low bandwidth, bulk symmetric encryption is very slow. 
 
Electronic purse functionalities are often present, but they are typically based on symmetric key 
technologies such as DES and triple DES. Thus, a shared secret key enforces the security of many 
of these schemes. Hashing algorithms commonly found include SHA-1 and MD-5; but again the 
low bandwidth serial connection hinders effective use of bulk hashing on the card. 



  
Random number generation (RNG) varies among card vendors. Some implement a pseudo RNG 
where each card has a unique seed. In this case, random numbers cycle through, dependent on the 
algorithm and the seed. Some cards have a true, hardware based RNG using some physical aspect of 
the silicon. It’s best to check with the vendor for details of the RNG if it will be used in a 
cryptographically sensitive context.  
 
As with any technology, there are legal issues to keep in mind when dealing with smartcards. 
Commonly, a smartcard has the ability to perform certain licensed algorithms, such as the RSA 
asymmetric cipher. Usually any license fees associated with the algorithm are bundled into the cost 
of the smartcard. 

1.7 SECURITY FEATURES 
 
We already saw that one of the basics concepts on which smart card security architecture relays is 
that it should be really difficult to extract informations about card operating and file systems from 
the device without controls by both the chip and the card OS. To do so, various methods of 
hardware security monitoring are enabled on leading smartcards.  
 
A one-time, irreversible fuse typically disables any test code built into the EEPROM. In order to 
avoid card cloning an unalterable serial number is often burned into the memory. The cards are 
designed to reset themselves to a power-on state if they detect fluctuations in voltage, temperature, 
or clock frequency. Reading or Writing of the ROM is usually disabled. However, since every 
vendor has its own, usually proprietary, schemes for these measures, it’s always good to inquire 
and/or request reports from independent testing laboratories. 
 
Communications protocols on smartcards at the command level can also have a security protocol 
built in. These are typically based on symmetric key technology and allow the smartcard itself to 
authenticate the read/write terminal or vice versa. However, the cryptograms and algorithms for 
these protocols are usually specific to a given application and terminal set. 
 
Smartcards support the ability to configure multiple PINs that can have different purposes. 
Applications can configure one PIN to be a "Security Officer" PIN, which can unblock the User 
PIN, after a set number of bad PIN attempts, or re-initialize the card. Other PINs can be configured 
to control access to sensitive files or purse functions.  

 

2 SMART CARD USAGE 

2.1 EXAMPLES OF SMART CARD USAGE 
 
Since data stored on a smart card cannot be retrieved directly via the CAD, smart cards have been 
proposed as portable and secure data storage devices. In addition, their computing capabilities 
(expecially if integrated by the cryptographic co-processor) make them expecially suitable as 
private key storage devices for asymmetric algorithms, since in this way private keys can be 
generated and stored on board the card, and never leave it. Encryption and decryption of data are 
performed on request by the card chipset itself. In this way, the user’s private key is kept secure and 
can not be eavesdropped. Thus, chip cards have been the main platform for holding a secure digital 
identity. 
 
Smart Cards are now everywhere: in GSM phones (the SIM, Subscriber Identity Module, is a smart 
card), in new generation credit cards, in pay-TV and digital satellite decoders, and as a personal 



data holder in the next-generation of ID card projects. They are also used for credit cards and 
prepaid phone cards. Combining their two main functions of being a secure data container and a 
crypto-enabled device, cards can: 
 

?? securely hold money ("stored value cards") or money equivalents 
?? provide secure access to a network, secure identification, law-strong digital signature 
?? secure cellular phones from fraud 
?? allow set-top boxes on televisions to remain secure from piracy 

 
Even though smartcards provide many obvious benefits to computer security, they still haven’t 
caught on with great popularity in countries like the United States. This is not only because of the 
prevalence, infrastructure, and acceptability of magnetic stripe cards, but also because of a few 
problems associated with smartcards.  
 
Lack of infrastructure for smartcard reader/writers is often cited as a complaint. The major 
computer manufactures haven’t until very recently given much thought to offering a smartcard 
reader as a standard component. Many companies don’t want to absorb the cost of outfitting 
computers with smartcard readers until the economies of scale drive down their cost. In the 
meantime, many vendors provide bundled solutions to outfit any personal computer with smartcard 
capabilities. 
 
Lack of widely adopted smartcard standards is often cited as a complaint. The number of smartcard 
related standards is high and many of them address only a certain vertical market or only a certain 
layer of communications. This problem is lessening recently as web browsers and other mainstream 
applications are including smartcards as an option. Applications like these are helping to speed up 
the evolution of standards. 

2.2 SMART CARD AS SECURITY TOKENS 

2.2.1 USING SMART CARD AS CRYPTO DEVICES 
 
Smart Cards are extraordinarily useful as crypto devices. A primary reason for this is that they have 
the quite unique ability of being capable of generating and protecting a private signing key which 
can never leave the card. In this way it is really difficult for outsiders to gain knowledge of the 
private key, something which could otherwise happen for example through a compromise of the 
host computer system.  This has obvious and immediate advantages on protocols and applications 
oriented to authentication, authorization, privacy, integrity, and non-repudiation, for example PKI, 
Public Key Infrastructure, systems. These systems offer the services listed above by the means of a 
public/private key asymmetric algorithm. Now, placing the private certificate on a smartcard, which 
it never leaves, the crucial secret for the system is never in a situation where it is easily 
compromised. Moreover, if a private key is stored in a browser storage file on a hard drive, it is 
typically protected by a password. This file can be "dictionary attacked" where commonly used 
passwords are attempted in a brute force manner until knowledge of the private key is obtained. On 
the other hand, a smartcard will typically lock itself up after some low number of consecutive bad 
PIN attempts, for example 10. Thus, the dictionary attack is no longer a feasible way to access the 
private key if it has been securely stored on a smartcard. 
 
In addition, wherever multiple disjointed systems often have their security based on different 
technologies, smartcards can bring these together by storing multiple certificates and passwords on 
the same card. One of the biggest problems in typical password systems is that users write down 
their password and attach it to their monitor or keyboard. They also tend to choose weak passwords 



and share their passwords with other people. If a smartcard is used to store a user’s multiple 
passwords, they need only remember the PIN to the smartcard (and to own the device, of course) in 
order to access all of their passwords, which at this point can be really strong, random alphanumeric 
strings. The end user need never even know the passwords, so that they can’t be written down or 
shared with others. 

In addition to ease of use, the so called “two factor” authentication is stronger by nature than one 
factor. For authenticating yourself, there are basically 3 methods: something you know (a shared 
secret, or password), something you have (a token), or something you are (biometrics). A smart 
card is two factor, since it needs both something you know (the PIN) and something you have (the 
card itself). There are also prototypes of CADs with an integrated fingerprint scanner, which 
constitute a robust three factor authentication. 

2.2.2 SECURITY-RELATED STANDARDS 
 
This section discusses the principles of the most prominent standards that are used to integrate 
smartcard into computer applications to provide security related services. Any standard designed to 
facilitate the integration of smartcards into computer security systems should follow certain 
principles in order to be useful and gain acceptance:  
 

?? Multi-platform: any standard should be applicable to the whole wide variety of modern day 
operating systems and computer architectures; 

?? Open participation: any standard should be formed and reviewed through input and peer 
review from members of industry, academia, and government; 

?? Interoperability: any standard should be interoperable with other leading standards and 
protocols; 

?? Functional: any standard should apply to real world problems and markets and adequately 
address their requirements; 

?? Experience: any standard should be created by a group of people with real-world 
experience in security-related products and standards;  

?? Extensibility: any standard should facilitate expansion to new applications, protocols, and 
smartcard capabilities that weren’t yet around when the standard was created. 

 
The following are emerging as important standards with respect to the integration of smartcards into 
computer and network security applications:  
 

?? PKCS#11: Cryptographic Token Interface Standard14 
This standard specifies an Application Programming Interface (API), called Cryptoki, to 
devices which hold cryptographic information and perform cryptographic functions. 
Cryptoki, pronounced crypto-key and short for cryptographic token interface, follows a 
simple object-based approach, addressing the goals of technology independence (any kind of 
device) and resource sharing (multiple applications accessing multiple devices). PKCS#11 
presents to applications a common, logical view of the device called a cryptographic token. 
The standard was created in 1994 by RSA with input from industry, academia, and 
government. 

?? PC/SC 
The PC/SC Workgroup15 was formed in May 1997. It was created to address critical 
technical issues related to the integration of smartcards with the PC. PC/SC Workgroup 
members include Bull Personal Transaction Systems, Gemplus, Hewlett-Packard, IBM, 
Microsoft Corp., Schlumberger, Siemens-Nixdorf Inc., Sun Microsystems, Toshiba Corp., 
and VeriFone. The specification addresses limitations in existing standards that complicate 



integration of ICC devices with the PC and fail to adequately address interoperability, from 
a PC application perspective, between products from multiple vendors. It provides 
standardize interfaces to Interface Devices (IFDs) and the specification of common PC 
programming interfaces and control mechanisms. Version 1.0 was released in December of 
1997. 

?? OpenCard7  
OpenCard is a standard framework announced by International Business Machines 
Corporation, Inc., Netscape, NCI, and Sun Microsystems Inc. that provides for interoperable 
smartcard solutions across many hardware and software platforms. The OpenCard 
Framework is an open standard providing an architecture and a set of APIs that enable 
application developers and service providers to build and deploy smartcard aware solutions 
in any OpenCard-compliant environment. It was first announced March, 1997. 

?? JavaCard13 
The JavaCard API is a specification that enables the Write Once, Run Anywhere capabilities 
of Java on smartcards and other devices with limited memory. The JavaCard API was 
developed in conjunction with leading members of the smart card industry and has been 
adopted by over 95% of the manufacturers in the smart card industry, including Bull/CP8, 
Dallas Semiconductor, De La Rue, Geisecke & Devrient, Gemplus, Inside Technologies, 
Motorola, Oberthur, Schlumberger, and Toshiba. 

?? Common Data Security Architecture16 
Developed by Intel, the Common Data Security Architecture (CDSA) provides an open, 
interoperable, extensible, and cross-platform software framework that makes computer 
platforms more secure for all applications including electronic commerce, communications, 
and digital content. The CDSA 2.0 specifications were adopted by The Open Group in 
December 1997. 

?? Microsoft Cryptographic API17 
The Microsoft® Cryptographic API (CryptoAPI) provides services that enable application 
developers to add cryptography and certificate management functionality to their Win32® 
applications. Applications can use the functions in CryptoAPI without knowing anything 
about the underlying implementation, in much the same way that an application can use a 
graphics library without knowing anything about the particular graphics hardware 
configuration. 

2.2.3 APPLICATION EXAMPLES 

?? Web Browsers (SSL, TLS) 
Web browsers use technology such as Secure Sockets Layer (SSL) and Transport Layer 
Security (TLS) to provide security while browsing the World Wide Web. These 
technologies can authenticate the client and/or server to each other and also provide an 
encrypted channel for any message traffic or file transfer. The authentication is enhanced 
because the private key is stored securely on the smartcard. The encrypted channel typically 
uses a symmetric cipher where the encryption is performed in the host computer because of 
the low data transfer speeds to and from the smartcard. Nonetheless, the randomly generated 
session key that is used for symmetric encryption is wrapped with the partner’s public key, 
meaning that it can only be unwrapped on the smartcard. Thus it is very difficult for an 
eavesdropper to gain knowledge of the session key and message traffic. 

?? Secure Email (S/MIME, OpenPGP) 
S/MIME and OpenPGP allow for email to be encrypted and/or digitally signed. As with 
SSL, smartcards enhance the security of these operations by protecting the secrecy of the 
private key and also unwrapping session keys within a security perimeter. 



?? Form Signing 
Web based HTML forms can be digitally signed by your private key. This could prove to be 
a very important technology for internet based business because it allows for digital 
documents to be hosted by web servers and accessed by web browsers in a paperless 
fashion. Online expense reports, W-4 forms, purchase requests, and group insurance forms 
are some examples. For form signing, smartcards provide portability of the private key and 
certificate as well as hardware strength non repudiation. 

?? Object Signing 
If an organization writes code that can be downloaded over the web and then executed on 
client computers, it is best to sign that code so the clients can be sure it indeed came from a 
reputable source. Smartcards can be used by the signing organization so the private key 
can’t be compromised by a rogue organization in order to impersonate the valid one. 

?? Kiosk / Portable Preferences 
Certain applications operate best in a "kiosk mode" where one computer is shared by a 
number of users but becomes configured to their preferences when they insert their 
smartcard. The station can then be used for secure email, web browsing, etc. and the private 
key would never leave the smartcard into the environment of the kiosk computer. The kiosk 
can even be configured to accept no mouse or keyboard input until an authorized user inserts 
the proper smartcard and supplies the proper PIN. 

?? File Encryption 
Even though the 9600 baud serial interface of the smartcard usually prevents it from being a 
convenient mechanism for bulk file encryption, it can enhance the security of this function. 
If a different, random session key is used for each file to be encrypted, the bulk encryption 
can be performed in the host computer system at fast speeds and the session key can then be 
wrapped by the smartcard. Then, the only way to easily decrypt the file is by possessing the 
proper smartcard and submitting the proper PIN so that the session key can be unwrapped. 

?? Workstation Logon 
Logon credentials can be securely stored on a smartcard. The normal login mechanism of 
the workstation, which usually prompts for a username and password, can be replaced with 
one that communicates to the smartcard. 

?? Dialup Access (RAS, PPTP, RADIUS, TACACS) 
Many of the common remote access dial-up protocols use passwords as their security 
mechanism. As previously discussed, smartcards enhance the security of passwords. Also, 
as many of these protocols evolve to support public key based systems, smartcards can be 
used to increase the security and portability of the private key and certificate. 

?? Payment Protocols (SET) 
The Secure Electronic Transactions (SET) protocol allows for credit card data to be 
transferred securely between customer, merchant, and issuer. Because SET relies on public 
key technology, smartcards are a good choice for storage of the certificate and private key. 

?? Digital Cash 
Smartcards can implement protocols whereby digital cash can be carried around on a 
smartcard. In these systems, the underlying keys that secure the architecture never leave the 
security perimeter of hardware devices. Mondex18, VisaCash19, EMV ( Europay-Mastercard-
Visa ), and Proton20 are examples of digital cash protocols designed for use with smartcards. 



?? Building Access 
Even though the insertion, processing time, and removal of a standard smartcard could be a 
hassle when entering a building, magnetic stripe or proximity chip technology can be added 
to smartcards so that a single token provides computer security and physical access. 

?? Law-strong digital signatures 
New digital signature laws are being written by many states that make it the end user’s 
responsibility to protect their private key. If the private key can never leave an automatically 
PIN disabling smartcard, then the end user can find it easier to meet these responsibilities. 
Certificate authorities can help in this area by supporting certificate extensions that specify 
the private key was generated in a secure environment and has never left the confines of a 
smartcard. With this mechanism, higher levels of non-repudiation can be achieved when 
verifying a smartcard based signature while using a certificate containing such an extension. 
In other words, a digital signature carries more weight if its associated certificate validates 
that the private key resides on a smartcard and can never be extracted. 

2.3 SECURITY EVALUATION OF SMART CARDS 

2.3.1 SECURITY DESIGN STANDARDS 
 
The ultimate goal of smart card security is proven robustness and correct functioning of every 
single card delivered to the card user. Chip security and card life cycle security are the key links in 
this chain. Chip and card life cycle security are non-competitive issues which means that these 
properties should not and cannot be separated in the design process. 
 
The market for smart cards is highly cost sensitive; differences of a few cents per card matter when 
millions of units are involved. This means that any defensive measures must meet very stringent 
cost effectiveness tests that are unusual with other IT products. Attacks that involve multiple parts 
of a security system are difficult to predict and model. If cipher designers, software developers, and 
hardware engineers do not understand or review each other's work, security assumptions made at 
each level of a system's design may be incomplete or unrealistic. As a result, security faults often 
involve unanticipated interactions between components designed by different people. For example, 
National Institute of Standard and Technology (NIST) emphasizes the importance of computer 
security awareness and of making information security a management priority that is communicated 
to all employees21. 

2.3.2 SMART CARD SECURITY EVALUATION 
 
Currently, Financial Payment Systems, i.e. credit card brands, individually do smart card 
evaluations – unstandardized, possibly conflicting22. Vendor's products may be subject to 
conflicting requirements, repeated and expensive evaluations by different users. ISO 15408 – 
Common Criteria for Information Technology Security Evaluation, the "CC", represents the 
outcome of efforts to develop criteria for evaluation of IT security that are widely useful within the 
international community. It is an alignment and development of a number of source criteria: The 
existing European, US, and Canadian criteria (ITSEC, TCSEC and CTCPEC respectively). The 
Common Criteria resolves the conceptual and technical differences between the source criteria. It is 
a contribution to the development of an international standard, and opens the way to worldwide 
mutual recognition of evaluation results. Version 1.0 of the CC was published for comment in 
January 1996. Version 2.1, the current version, was published in December 1999. If independent 
third party evaluation should become mandatory, it would require sharing test methods and 
information about vulnerabilities between private companies and independent institutions23. A 
public acceptance of an evaluation scheme could even require an open discussion and disclosure of 



information about risks and vulnerabilities to the public. It is therefore unfortunate if smart card 
security really depends on confidentiality of CPU design and specifications. 
 
Common Criteria established an handful of important concepts  in security system evaluations: 
 

?? There should be a common structure and language for expressing product or system IT 
security requirements24 

?? There should be “catalogs” of standardized IT security requirement components and 
packages. The CC presents requirements25 for the IT security of a product or system under 
the distinct categories of functional requirements and assurance requirements. The CC 
functional requirements define desired security behavior. Assurance requirements are the 
basis for gaining confidence that the claimed security measures are effective and 
implemented correctly. 

?? The CC envisages the definition of Protection Profile (PP), standardized and well 
understood sets of implementation independent security requirements developed by a user 
group to specify their security functionality needs for a particular product (there are 
examples in literature26). This allows a manufacturer or product developer to build a product 
according to the requirements of a PP. They can then have it evaluated and claim 
conformance to the PP. The product is still evaluated against a security target (ST) but the 
contents of the ST mirror the requirements laid down in the PP. A security target is created 
by the product vendor and is therefore implementation specific. 

 
The smart card protection profile presented in this study is a joint effort of the Smart Card Security 
User Group (SCSUG). SCSUG is a global financially oriented industry group formed specifically to 
represent the security needs of the user community. It comprises of American Express, Europay, 
JCB, MasterCard, Mondex, Visa, NIST and NSA. 
 
As most readers surely know, before Common Criteria development one of the most accepted 
security standards was ITSEC (which served as a basis for the CC  themselves). A study27 gives us 
an overview how certification work under ITSEC and Common Criteria schemes. It points out the 
difficulty of comparison of these two schemes. There are several issues which favor CC over 
ITSEC. 
 
The advantage of the second important concept in CC is that the security functionality will be 
expressed in an explicit, unambiguous way. The wording is well understood and includes detailed 
guidance for interpretation and application. The first important concept in CC makes comparison of 
certifications by users and mutual recognition by certification bodies more practical. The detailed 
guidance in CC on calculating attack potential aims at removing some of the subjectivity from this 
difficult assessment task and it may offer more clarity than the ITSEC. The Smart Card Security 
User Group protection profile emphasizes that a vulnerability to certain types of threats can only be 
ascertained by examining the IC, operating system and applications as an integrated whole because 
effective security relies on a synergistic contribution of these three layers. 
 
It was further noted in the same study that all the examined ITSEC certifications claimed a high 
Strength of Mechanisms (SoM) but the scope of each evaluation was also limited in some way, 
either to particular phases of the card life cycle, by exclusion of the chip from the Target of 
Evaluation or by specifically excluding relevant threats. It can be questioned whether a high SoM 
would have been attained if all threats were considered in the context of the integrated product, as it 
is issued to the user in its actual mode of use. 
 
  



3 ATTACKS TO SMART CARDS 

3.1 OUR APPROACH 
 
As we already said, smart cards promise numerous security benefits. Unlike magnetic stripe cards, 
they can protect the stored data against unauthorized access. However, the strength of this 
protection seems to be frequently overestimated. 
 
There is no security system which is unbreakable28, or at least no one has designed such a system 
until now. Designing secure systems is a matter of balancing costs and benefits, which means it is 
truly a matter of engineering. Availability, Integrity, and Confidentiality, can be only “partially” 
granted, and time and resources devoted to these requirements must be correctly balanced against 
other functional requirements. 
 
In this perspective, analyzing the security of a system means wondering if it properly protects the 
value of the information stored inside, or: how much would it cost (measured in time, in money, in 
skill and in effort) to a given attacker to execute successfully an attack? And how much benefit 
could he have? As engineers and designers we must be conscious of the existence of attacks, and 
deploy countermeasures as appropriate, until we are reasonably sure that an attack would be far too 
costly for an attacker than any benefit he could obtain. 
 
A simple example of design gone awry is the protection scheme used for digital content protection 
on satellite TV channels. Almost every existing scheme has been cracked, but in some cases the 
hack is so simple and immediate, and requires so small knowledge and skill, that almost anyone can 
perform it directly with a simple PC and a smart card programmer. If, for example, decoding a 
single transmission required an hour of preparation, no one would loose so much time. 
 
A taxonomy of attackers in three classes of increasingly high danger has been proposed29 by IBM 
researchers as follows: 
Class I (clever outsiders): They are often very intelligent but may have insufficient knowledge of 
the system. They may have access to only moderately sophisticated equipment. They often try to 
take advantage of an existing weakness in the system, rather than try to create one.  
Class II (knowledgeable insiders): They have substantial specialized technical education and 
experience. They have varying degrees of understanding of parts of the system but potential access 
to most of it. They often have highly sophisticated tools and instruments for analysis.  
Class III (funded organisations): They are able to assemble teams of specialists with related and 
complementary skills backed by great funding resources. They are capable of in-depth analysis of 
the system, designing sophisticated attacks, and using the most advanced analysis tools. They may 
use Class II adversaries as part of the attack team. 
 
Obviously various attacks will or won’t be available to any of these classes of attackers, and any 
device we design can be made arbitrarily secure. We must understand which kind of attackers we 
will be facing before attempting to design the security of a smart card system (or any security 
system, in fact). Only with this information available we will be able to make proper design and 
engineering decisions. 
 
As we said in the abstract, in this paper we will try to list most of the known and well-documented 
methods to attack smart-card based systems. We will focus on attacks against the smart-card itself 
or its interaction with the CAD device. We will also briefly discuss API and OS level attacks. We 
will not deal with protocols and applications relaying on smart cards for security, or with the issues 
associated with digital signature, non repudiation or authentication schemes. We will focus on the 



security of the smart card itself, and of its contents. A complete taxonomy of all the kinds of 
security glitches and attacks that a card may suffer, along with countermeasures, has been proposed 
by Bruce Schneier to a USENIX conference30. 
 
Independent security labs test for common security attacks on leading smartcards, and can usually 
provide an estimate of the cost in equipment and expertise of breaking the smartcard. When 
choosing a smartcard for an architecture, one can ask the manufacturer for references to 
independent labs that have done security testing. Using this information, designers can strive to 
ensure that the cost of breaking the system would be much greater than the value of any information 
obtained. 

3.2 INVASIVE ATTACK TECHNIQUES 

3.2.1 GENERALITIES 
 
An attack on a smart card is defined “invasive” if it involves such a tampering of the device which 
is clearly visible for anyone. In fact, most of the techniques listed here require an utter destruction 
of the card hardware. 
 
In addition, while non-invasive attacks can usually be performed by “borrowing” for some small 
amount of time a smart card device, invasive attacks can require hours of work in specialized labs 
and are therefore available only to highly skilled and funded attackers. 
 
Therefore there is a small probability that such an attack could be performed without knowledge of 
the user (who will realize, sooner or later, that he no longer owns his card), and there is also small 
point in performing such attacks on authentication and signature devices (which can be revoked 
when the user discovers the loss). 
 
However, if we are designing a smart card based information system which stores highly valuable 
information on board the card, such attacks are clearly a concern. 
 

3.2.2 REMOVING THE CHIP FROM THE CARD 

All invasive attacks starts with the removal of the chip package. As we said before, the typical chip 
module consists of a thin plastic basis plate of about a square centimetre with conductive contact 
areas on both sides. One side is visible on the final card and makes contact with the card reader; the 
silicon die is glued to the other side, and connected using thin gold or aluminium bonding wires. 
The chip side of the plastic plate is then covered with epoxy resin. The resulting chip module is 
finally glued into the card. 

Removing the chip is easy. First, we use a sharp knife or hand lathe to cut away the plastic behind 
the chip module until the epoxy resin becomes visible; otherwise we may just heat the card plastic 
until it becomes flexible, and then remove the chip by simply bending the card.  
 
Now we cover the chip with 20-50 ml of hot (60°C) fuming nitric acid (>98% HNO3) on the resin 
and wait a few minutes until the acid dissolves the black epoxy resin that encapsulates the silicon 
drive. Then we wash acid and resin away by shaking the card in acetone in an ultrasonic bath. We 
can repeat this procedure if necessary, and conclude it with a final bath in deionised water and 
isopropanol31. 



3.2.3 REVERSE ENGINEERING OF THE CHIPSET 
 
If the chip itself is custom-designed to perform special functions, there is a nonzero probability that  
the designers violated the Kerckhoff’s Principle, which states that the strength of a crypto device – 
and by extension of a security device – must rely solely into the secret, or key, not into the 
structures and the algorithms. 
 
In other words, if they felt that their custom design was “secret”, its secrecy could well be its only 
protection. Security through obscurity has never worked, nor does it work with smart cards. Card 
components can be reverse engineered. Some steps of this process even apply to cards with standard 
processors – you will still need to understand the layout of bus lines and chip modules on the 
chipset, even if you know perfectly well what each one does. 
 
The first step is to create a map of a new processor. It could be done by using an optical microscope 
with a CCD camera to produce meters-large, high-resolution photographs of the chip surface. The 
attacker has to be familiar with CMOS VLSI design techniques and microcontroller architectures, 
but the necessary knowledge is easily available from numerous textbooks32 33 34 35. Deeper layers 
can only be recognized in a second series of photographs after the metal layers have been stripped 
off, which can be achieved by etching the chip, for instance by submerging it for a few seconds in 
hydrofluoric acid (HF) in an ultrasonic bath31. HF quickly dissolves the silicon oxide around the 
metal tracks and detaches them from the chip surface. This is called “wet etching”. Details on how 
to examine circuits, on tools and methods, are present in literature36. 
 
More sophisticated tools like focused ion beam (FIB) workstations can be used to perform attacks. 
A focused ion beam (FIB) workstation consists of a vacuum chamber with a particle gun,  
comparable to a scanning electron microscope (SEM). Gallium ions are accelerated and focused 
from a liquid metal cathode with 30 kV into a beam of down to 5-10 nm diameter, with beam 
currents ranging from 1 pA to 10 nA. FIBs can image samples from secondary particles similar to a 
SEM with down to 5 nm resolution. 
 
By increasing the beam current, chip material can be removed37 with the same resolution at a rate of 
around 0.25 µm3 nA-1 s-1. Better etch rates can be achieved by injecting a gas like iodine via a 
needle that is brought to within a few hundred micrometers from the beam target. Gas molecules 
settle down on  the chip surface and react with removed material to form a volatile compound that 
can be pumped away and is not redeposited. Using this gas-assisted etch technique, holes that are up 
to 12 times deeper than wide can be created at arbitrary angles to get access to deep metal layers 
without damaging nearby structures. By injecting a platinum-based organo-metallic gas that is 
broken down on the chip surface by the ion beam, platinum can be deposited to establish new 
contacts. With other gas chemistries, even insulators can be deposited to establish surface contacts 
to deep metal without contacting any covering layers. 
 
Using laser interferometer stages, a FIB operator can navigate blindly on a chip surface with 0.15 
µm precision, even if the chip has been planarized and has no recognizable surface structures. Chips 
can also be polished from the back side down to a thickness of just a few tens of micrometers. 
Using laser-interferometer navigation or infrared laser imaging, it is then possible to locate 
individual transistors and contact them through the silicon substrate by FIB editing a suitable hole. 
This rear-access technique has probably not yet been used by pirates so far, but the technique is 
about to become much more commonly available and therefore has to be taken into account by 
designers of new security chips. 
 



FIBs are used by attackers today primarily to simplify manual probing of deep metal and 
polysilicon lines. A hole is drilled to the signal line of interest, filled with platinum to bring the 
signal to the surface, where a several micrometer large probing pad or cross is created to allow easy 
access. Modern FIB workstations cost about half a million euro and are available in over hundred 
organizations. Processing time can be rented from numerous companies all over the world for a few 
hundred euro per hour. 
 
Another useful particle beam tool are electron-beam testers (EBT)38. These are SEMs with a 
voltage-contrast function. Typical acceleration voltages and beam currents for the primary electrons 
are 2.5 kV and 5 nA. The number and energy of secondary electrons are an indication of the local 
electric field on the chip surface and signal lines can be observed with submicrometer resolution. 
The signal generated during EBT is essentially the low-pass filtered product of the beam current 
multiplied with a function of the signal voltage, plus noise. EBTs can measure waveforms with a 
bandwidth of several gigahertz, but only with periodic signals where stroboscopic techniques and 
periodic averaging can be used. If we use real-time voltage-contrast mode, where the beam is 
continuously directed to a single spot and the blurred and noisy stream of secondary electrons is 
recorded, then the signal bandwidth is limited to a few megahertz38. While such a bandwidth might 
just be sufficient for observing a single signal line in a 3.5 MHz smartcard, it is too low to observe 
an entire bus with a sample frequency of several megahertz for each line. 
 
EBTs are very convenient attack tools if the clock frequency of the observed processor can be 
reduced below 100 kHz to allow real-time recording of all bus lines or if the processor can be 
forced to generate periodic signals by continuously repeating the same transaction during the 
measurement. Therefore, a low-frequency alarm is commonly found on smartcard processors. 
However, simple high-pass or low-pass RC elements are not sufficient, because by carefully 
varying the duty cycle of the clock signal, we can often prevent the activation of such detectors. A 
good low-frequency sensor must trigger if no clock edge has been seen for longer than some 
specified time limit (e.g., 0.5 µs). 
 
In this case, the processor must not only be reset immediately, but all bus lines and registers also 
have to be grounded quickly, as otherwise the values on them would remain visible sufficiently long 
for a voltage-contrast scan. 
 
Even such carefully designed low-frequency detectors can quite easily be disabled by laser cutting 
or FIB editing the RC element. To prevent such simple tampering, an article47 suggests that an 
intrinsic self-test can be built into the detector, so that any attempt to tamper with the sensor should 
result in the malfunction of the entire processor. The authors have designed such a circuit that tests 
the sensor during a required step in the normal reset sequence. External resets are not directly 
forwarded to the internal reset lines, but only cause an additional frequency divider to reduce the 
clock signal. This then activates the low-frequency detector, which then activates the internal reset 
lines, which finally deactivate the divider. The processor has now passed the sensor test and can 
start normal operation.  
 
The processor is designed such that it will not run after a power up without a proper internal reset. 
A large number of FIB edits would be necessary to make the processor operational without the 
frequency sensor being active. Other sensor defenses against invasive attacks should equally be 
embedded into the normal operation of the processor, or they will easily be circumvented by merely 
destroying their signal or power supply connections. 
 
Another article39 details how at the Cambridge University microelectronics lab, they were able to 
build an apparatus for smart card reverse engineering, consisting of a slightly modified electron 



beam lithography machine (this functions in effect as an electron microscope) and a PC with an 
image processing system (a DCT chip and locally written software). They then developed 
techniques for etching away a layer at a time without doing too much damage. Conventional wet 
etching causes too much havoc with half micron chips, so “dry etching” is used in which gases such 
as CF4 or HF strip off layers of silica and aluminium in turn. 

One of their innovations is a technique to show up N and P doped layers in electron micrographs. 
This uses the Schottky effect: a thin film of a metal such as gold or palladium is deposited on the 
chip creating a diode effect which can be seen with the electron beam.  

Finally, image processing software has been developed to spot the common chip features and 
reduce the initially fuzzy image of the metal tracks into a clean polygon representation. There are 
also routines to get images of successive layers, and of adjacent parts of the chip, in register.  

The system has been tested by reverse engineering the Intel 80386 and a number of other devices. 
The 80386 took two weeks; it takes about six instances of a given chip to get it right. The output 
can take the form of a mask diagram, a circuit diagram or even a list of the library cells from which 
the chip was constructed.  

This is typical of the kind of attack which an academic lab can mount. Even more sophisticated 
attacks, invented at Sandia National laboratories and recently published40, involve looking through 
the chip. Light-Induced Voltage Alteration is a non-destructive technique that involves probing 
operating ICs from the back side with an infrared laser to which the silicon substrate is transparent. 
The photocurrents thus created allow probing of the device's operation and identification of logic 
states of individual transistors. Low-Energy Charge Induced Voltage Alteration relies on a surface 
interaction phenomenon that produces a negative charge-polarization wave using a low- energy 
electron beam generated by a scanning electron microscope. This allows imaging the chip to 
identify open conductors and voltage levels without damage, although it does not operate through 
metallization layers. Of course, even more sophisticated techniques may be available in classified 
government facilities.  

As a defense, a number of copy trap features are incorporated into commercial chip designs. For 
example, we have heard of design elements that look like a transistor, but are in reality only a 
connection between gate and source; and 3-input NORs which function only as 2-input NORs.  
Many of these copier traps are based on holes in isolating layers or on tricks done in the diffusion 
layer with ion implantation (based on the assumption that it is hard to distinguish N from P). 
However the layer etching and Schottky techniques developed by Haroun Ahmed's team can detect 
such traps.  

Another possibility is to introduce complexity into the chip layout and to use nonstandard cell 
libraries. However the chip still has to work, which limits the complexity; and nonstandard cells can 
be reconstructed at the gate level and incorporated in the recognition software. Finally, in the 
Clipper chip (created by U.S. Government and NSA as a standard black box encryption module) 
there are a number of silicon features, of which the most important is a fusible link system. These 
links are only fused after fabrication and hold the long term key and other secret aspects of the chip. 
Details can of course be found in a paper in the relevant data book41, and from the scanning electron 
micrographs there, it is clear that the secret information can be recovered by sectioning the chip. 
This technique has been used by Professor Ahmed's team on occasion on obscure features in other 
chips.  



Thus the effect of current silicon level copy traps is just to slow down the attacker. In fact, there are 
widespread rumors that Intel has reverse engineered the Clipper chip, but that the results have been 
classified. However, a successful attack42 against the protocols (and not the hardware) of the 
Clipper chip made further research virtually uninteresting. 

The same appears to be the case for chemical measures. Chips intended for classified military use 
are often protected by passivation layers of a tenacity never encountered in civilian packaging43. 
But here again, informed sources agree that with enough effort, techniques can be developed to 
remove them.  

We understand that neither silicon copy traps not advanced passivation techniques are used by 
smartcard manufacturers in the bulk of their products. The marketing director of a smartcard 
manufacturer said that they simply had no demand from their users for anything really 
sophisticated. The most that appears to be done is an optical sensor under an opaque coating.  

Hi-tech techniques may indeed have been used by commercial pirates to duplicate satellite TV 
smartcards. Recent postings to a TV hackers' mailing list recount how an undergraduate used nitric 
acid and acetone to remove ICs intact from Sky-TV smartcards; he then put them in the University's 
electron beam tester (an ICT 8020, also sold as the Advantest E 1340 - a 1991 machine). The chips 
were run in a test loop, but he had been unable to remove the silicon nitride passivation layer; the 
many secondary electrons removed from this caused it to get charged positive very quickly, which 
obscured the underlying circuit. He did not have access to a dry etching facility to remove this 
layer, and could get no further. However it is significant that a person with no funding or specialist 
knowledge could get even this far.  

3.2.4 MICROPROBING 
 
Microprobing means removing the chip from the card and interacting directly with its components. 
It is closely associated with reverse engineering of the chip (in fact, we separated the paragraph for 
a purely didactical purpose). By microprobing, we violate the black box assumption (that is, the 
card can be accessed only through a proper CAD) and therefore cause almost all the protection 
scheme to fail (since it’s based fundamentally on that one assumption).  

A microprobing attack starts with the removal of the chip package, but even once the chip is 
opened, it is still not possible to perform probing or modification attacks: to do so, you need to 
remove at least part of the passivation layer (which is a layer of silicon nitride or oxide, which 
protects them from environmental influences and ion migration) before probes can establish 
contact. This is not affected by nitric acid; chip testers typically remove it using dry etching with 
hydrogen fluoride, a process that is not as easily performed by amateur hackers. 

But dry etching is not the only option. Another approach is to use microprobing needles that remove 
the passivation just below the probe contact point using ultrasonic vibration. Laser cutter 
microscopes commonly used in cellular biology laboratories have also been used to remove the 
passivation locally. The UV or green laser is mounted on the camera port of the microscope and 
fires laser pulses through the microscope onto rectangular areas of the chip with micrometer 
precision. Carefully dosed laser ashes remove patches of the passivation layer. The resulting hole in 
the passivation layer can be made so small that only a single bus line is exposed. This prevents 
accidental contacts with neighbouring lines and the hole also stabilizes the position of the probe and 
makes it less sensitive to vibrations and temperature changes.  



It is also normal to remove the passivation before using an electron beam tester to access on-chip 
signals, because the secondary electrons emitted by the chip surface accumulate a positive charge 
on the passivation layer which causes the signals to disappear after a few seconds. One might 
therefore think that such attacks would require dry etching facilities. However, in some experiments 
with an electron beam tester, it was found that the charge accumulation effect is less serious when 
the chip is still covered with a thin dirt layer of HNO3 and resin remains, which is probably weakly 
conductive. It has been suggested that a suitable weakly conductive layer might be deposited on top 
of the passivation layer as an alternative way of preventing the charge build-up. 
 
The most important tool for invasive attacks is a microprobing workstation. Its major component is 
a special optical microscope (e.g., Mitutoyo FS-60) with a working distance of at least 8 mm 
between the chip surface and the objective lens. On a stable platform around a socket for the test 
package, we install several micropositioners, which allow us to move a probe arm with 
submicrometer precision over a chip surface. On this arm, we install a “cat whisker” probe. This 
is a metal shaft that holds a 10 µm diameter and 5 mm long tungsten-hair, which has been 
sharpened at the end into a tip of less than 0,1 µm diameter. These elastic probe hairs allow us to 
establish electrical contact with on-chip bus lines without damaging them. We connect them via an 
amplifier to a digital signal processor card that records or overrides processor signals and also 
provides the power, clock, reset, and I/O signals needed to operate the processor via the pins of the 
test package. Some testing laboratories have sets of nine microprobes so that the card bus can be 
read out during real time operation44. 
 
Just to give a order-of-magnitude idea of cost ranges, complete microprobing workstations cost tens 
of thousands of euro, with the more luxurious versions reaching well over a hundred thousand euro. 
The cost of a new laser cutter is roughly in the same region. Low-budget attackers are likely to get a 
cheaper solution on the second-hand market for semiconductor test equipment. With patience and 
skill it should not be too difficult to assemble all the required tools for even under ten thousand euro 
by buying a second-hand microscope and using self-designed micropositioners. The laser is not 
essential for first results, because vibrations in the probing needle can also be used to break holes 
into the passivation. 
 
Microprobing attacks can be further extended by the usage of a FIB, as said before, which can be 
used not just to explore the silicon, but even to modify the chip structure by creating new 
interconnect lines and even new transistors. Let’s take, for instance, the Mondex45 project. A TNO 
team lead by Ernst Bovenlander broke the smart card chipset used in this infamous “electronic 
purse” scheme (a 3101 controller) by microprobing. They simply fused a link in the card processor, 
which while intact activates a test mode in which all card contents are simply dumped to the serial 
port. Tom Rowley of National Semiconductor reported a similar attack on an unnamed chip using 
an ion beam to rewrite the link. 
 
These weaknesses were reputedly fixed in the 3109 chip, by reducing the scale of chip technology 
from 1.3 microns (in the 3101) to 0.8 microns which substantially increases the difficulty of 
conventional physical probing or memory imaging type attacks, However, simply using a FIB to 
plate a nice large contact for the microprobe on each bus line is a widely known solution for 
eliminating the 0.8 micron difficulty. As always, the safest thing to do is to change the physical 
architecture of the chip to eliminate completely the “test mode memory access links”. 
 
In addition, with 2 microprobe needles any given bit in an EEPROM can be set or reset46 (this 
makes it trivial to extract a key which parity is a precondition for the algorithm, for instance), and 
with a laser cutter microscope any given bit in a ROM can be modified as well. Another impressive 
attack by Biham and Shamir against DES hardware implementation was presented at the 1997 



workshop on Fast Software Encryption, and uses a laser cutter to destroy an individual gate in the 
hardware implementation of a known block cipher, namely the last bit of the carry register that 
feeds the output of a round as the input of the next. If the least significant bit of this register is 
stuck, then the effect is that the least significant bit of the output of the round function is set to zero. 
By comparing the least significant six bits of the left half and the right half, several bits of key can 
be recovered; given about ten ciphertexts from a chip that has been damaged in this way, 
information about the round keys of previous rounds can be deduced using the techniques of 
differential cryptanalysis (see below), and enough of the key can be recovered to make keysearch 
easy. 
 
This is an extremely impressive attack, and in fact the first one that works against ciphers such as 
DES when the plaintext is completely unknown. This is the case in many smartcard applications 
where the card uses successive transactions to report its internal state to the issuer. There is a simple 
countermeasure to this new attack69: a chip modified in this way will have the property that 
encryption and decryption are no longer inverses. So a simple self-test procedure can be added that 
takes an arbitrary input, encrypts and decrypts under an arbitrary key, and compares the result with 
the original block. 
 
Another, rather typical attack involves disconnecting almost all of the CPU from the bus, leaving 
only the EEPROM and a CPU component that can generate read accesses. In order to read out all 
memory cells without the help of the card software, we have to abuse a CPU component as an 
address counter to access all memory cells for us. The program counter is already incremented 
automatically during every instruction cycle and used to read the next address, which makes it 
perfectly suited to serve us as an address sequence generator60. We only have to prevent the 
processor from executing jump, call, or return instructions, which would disturb the program 
counter in its normal read sequence. Tiny modifications of the instruction decoder or program 
counter circuit, which can easily be performed by opening the right metal interconnect with a laser, 
often have the desired effect. 

 
 
Once this has been done, the attacker needs only a single microprobing needle or electro-optical 
probe to read the entire EEPROM contents. This makes the program much easier to analyse than in 
passive attacks, which typically yield only an execution trace; it also avoids the considerable 



mechanical difficulties of keeping several probes simultaneously located on bus lines that are 
perhaps a micrometre wide. 
 
For some chipsets this does not work. For example some banking cards read critical data from 
memory only after authenticating somehow that they are indeed talking to an authorized CAD. In 
addition, we could in theory add separate watchdog counters that reset the processor if no jump, 
call, or return instruction is executed for an amount of time. However such devices can be disabled 
by slight modification of the chipset, so it’s far better to embed the protection in the structure of the 
chipset itself, for instance by not providing at all a program counter that can run over the entire 
address space. A 16-bit program counter can easily be replaced with the combination of a say 7-bit 
offset counter O and a 16-bit segment register S, such that the accessed address is S + O. Instead of 
overflowing, the offset counter resets the processor after reaching its maximum value. Every jump, 
call, or return instruction writes the destination address into S and resets O to zero. The processor 
will now be completely unable to execute more than 127 bytes of machine code without a jump, and 
no simple FIB edit will change this. A simple machine-code postprocessor must be used by the 
programmer to insert jumps to the next address wherever unconditional branches are more than 127 
bytes apart47. 
 
With the program counter now being unavailable, attackers will next try to increase the number of 
iterations in software loops that read data arrays from memory to get access to all bytes. This can 
for instance be achieved with a microprobe that performs a glitch attack directly on a bus-line. 
Programmers who want to use 16-bit counters in loops should keep this in mind. 
 
As a first line of defense against this kind of attacks, most smartcard operating systems write 
sensitive data to the EEPROM area in a proprietary, encrypted manner so that it is difficult to obtain 
cleartext keys by directly hacking into the EEPROM. This is by no means a solution (unless 
encryption is somehow entwined with a secret, i.e. a user supplied PIN), but everything that throws 
difficulty at the attacker can of course help somehow. 
 
Additionally47, metallization layers that form a sensor mesh above the actual circuit and that do not 
carry any critical signals remain one of the more effective annoyances to physical attacker. They are 
found in a few smartcard CPUs such as the ST16SF48A or in some battery-buffered SRAM 
security processors such as the DS5002FPM and DS1954. 
 
A sensor mesh in which all paths are continuously monitored for interruptions and short-circuits 
while power is available prevents laser cutter or selective etching access to the bus lines. Mesh 
alarms should immediately set to zero all the non-volatile memory for all plaintext cryptographic 
keys and other unprotected critical security parameters. A well-designed mesh can make attacks by 
manual micro probing alone rather difficult, and more sophisticated FIB editing procedures will be 
required to bypass it. This is all fine in theory, but real implementations seldom keep up with this 
quality expectancies. In most implementation, a mesh breach will merely raise a flag, expecting 
card software to take necessary countermeasures. Since we know that in most probing attacks the 
instruction decoder is severely tampered, we cannot trust it to take any action correctly. 
 
There’s an additional danger to avoid. Micro controller production has a yield of typically around 
95%, so each has to be thoroughly tested after production. Test engineers, like microprobing 
attackers, have to get full access to a complex circuit with a small number of probing needles. On 
normal processors, the test circuitry is left fully intact after the test. In smart card processors, it is 
common practice to blow polysilicon fuses that disable access to these test circuits. However, 
attackers have been able to reconnect these with microprobes or FIB editing, and then simply used 



the test circuitry to dump the entire memory content. Therefore, it is essential that any test circuitry 
is not only slightly disabled but also structurally destroyed by the manufacturer. 

One approach is to place the test interface for chip n onto the area of chip n + 1 on the wafer, such 
that cutting the wafer into dies severs all its parallel connections. A wafer saw usually removes a 
80-200 µm wide area that often only contains a few process control transistors. Locating essential 
parts of the test logic in these cut areas would eliminate any possibility that even substantial FIB 
edits could reactivate it. 

There are also other hidden dangers; for instance sometimes you may encounter a card where the 
programmer believed that by calculating and verifying some memory checksum after every reset 
the tamper-resistance could somehow be increased. This gives the attacker of course easy 
immediate access to all memory locations on the bus and simplifies completing the read-out 
operation considerably. Surprisingly, such memory integrity checks were even suggested in the 
smartcard security literature48, in order to defeat a proposed memory rewrite attack technique69. 
This demonstrates the importance of training the designers of security processors and applications 
in performing a wide range of attacks before they start to design countermeasures. Otherwise, 
measures against one attack can far too easily backfire and simplify other approaches in unexpected 
ways. 

3.2.5 SEMI-INVASIVE ATTACKS  

A new category of attacks has been proposed by Sergei Skorobogatov49, that shares a part of the 
characteristics of invasive attacks. Like invasive attacks they require depackaging the chip in order 
to get access to the chip surface. However, the passivation layer of the chip remains virgin, as semi-
invasive methods do not require depassivation or creating contacts to the internal lines, since 
microprobing is not used for this attack technology. 

Semi-invasive attacks could be performed using such tools as UV light, X-rays and other sources of 
ionizing radiation, lasers and electromagnetic fields. They can be used individually or in 
conjunction with each other. For instance, we have found on the Internet a simple attack on the 
COP878250 to select carefully the area of the EEPROM containing the security bit to clear it. 

Once the layout and function of the chip are known, there is an extremely powerful technique 
developed by IBM for observing it in operation, without having to remove the passivation layer. 
The tester places a crystal of lithium niobate over the feature whose voltage is to be monitored. The 
refractive index of this substance varies with the applied electric field, and the potential of the 
underlying silicon can be read out using an ultraviolet laser beam passed through the crystal at 
grazing incidence. The sensitivity of this technique is such that a 5 V signal of up to 25 MHz can be 
read51, and we understand that it is a standard way for well funded laboratories to recover crypto 
keys from chips of known layout. When attacking a smartcard, for example, we would read the 
EEPROM output amplifiers. 
 
Another attack can be conducted simply by illumination52, since illumination of a target 
transistor causes it to conduct, thereby inducing a transient fault. Such attacks are very cheap to 
mount, and are finely grained and powerful: it has been demonstrated that it is possible to could 
change any individual bit of an SRAM array. This can be used to implement the attack of Boneh on 
RSA signatures against at least one smartcard currently on the market. Further details were not 
disclosed since the author was fearful of prosecution under the DMCA. A solution suggested by the 
author is the use of self-timed dual-rail logic. You can check below at paragraph 3.3.6 dangers and 
solutions for this kind of attack.  
 



Comparing with non-invasive attacks, semi-invasive attacks are harder to implement as they require 
depackaging of the chip. However, sometimes very much less expensive equipment is needed than 
for invasive attacks. And these attacks can be performed in a reasonably short time. There’s still a 
lot of research to do on this topic. 

3.2.6 DENYING WRITE ACCESS 
 
Designers of EEPROM based devices face a problem: erasing the charge stored in the oating gate of 
a memory cell requires a relatively high voltage. If the attacker can somehow avert this, then the 
information will be “unerasable”. 
 
Early smartcards received their programming voltage on a dedicated connection from the host 
interface. This led to attacks on pay-TV systems in which cards were initially enabled for all 
channels, and those channels for which the subscriber did not pay were deactivated by broadcast 
signals. By covering the programming voltage contact on their card with tape, or by clamping it 
inside the decoder using a diode, subscribers could prevent these signals to reprogram the card. 
They could then cancel their subscription without the vendor being able to cancel their service. 
 
Some cards are still vulnerable to this kind of attack, and it gives rise to a sporadic failure mode of 
some card-based public telephone systems: telephones where the relevant contact is dirty or bent 
may fail to decrement any user's card. However, the cards used nowadays in pay-TV decoders 
generate the required 12 V from the normal 5 V power supply using an on-chip oscillator and 
diode/capacitor network.  
 
This pushes up the cost of an attack, but does not make it impossible: large capacitors can be 
identified under a microscope and destroyed with lasers, ultrasonics or FIBs.  
 
Is this kind of failures only dangerous for prepaid phone cards or TV services ? No. As it is plainly 
obvious, a chip prepared in this way can be investigated at will without the risk of erasing the 
EEPROM, either by chance or because of some built-in protection feature. 
 

3.3 NON INVASIVE TECHNIQUES 

3.3.1 GENERALITIES 
 
A non invasive attack on a smart card device is more limited in many ways, but has a definite 
advantage: since, by definition, it leaves the device completely unharmed, it can be very difficult to 
discover. If we could retrieve the private key of a signature device without knowledge of the user, 
we could forge documents in his name even for a long time before our cheating is discovered.  
 
Sometimes non-invasive attacks can even be performed in a small amount of time, and with usual 
hardware (maybe with a bit of hacking). But these techniques also face hard limitations: since they 
must occur while a card is still operating in a black box fashion, any manipulation must be 
performed on the bytes entering and exiting the smartcard, or on the environmental conditions. In 
general a non-invasive attack requires that the software and hardware of the smart-card are known 
to the attacker. 

3.3.2 TIMING ATTACKS 
 



One example is the so-called "timing attack" described by Paul Kocher53. In this attack, various 
byte patterns are sent to the card to be signed by the private key. Information such as the time 
required to perform the operation and the number of zeroes and ones in the input bytes are used to 
eventually obtain the private key. There are logical countermeasures to this attack but not all 
smartcard manufacturers have implemented them. This attack requires that the attacker knows the 
the PIN to the card, or can trick the user into signing the byte patterns of his choosing (it is a 
chosen-plaintext attack, in cryptographic terms). 

3.3.3 SOFTWARE ATTACKS 
 
A number of attacks can be performed via software. For example, a trojan horse application could 
be used. The rogue application must be planted on an unsuspecting user’s workstation (if this seems 
difficult to you, remember how many users were affected by auto-executing worms employing the 
Outlook autoexecution bugs).  
 
The Trojan horse waits until the user submits a valid PIN from a trusted application, thus enabling 
usage of the private key, and then asks the smartcard to digitally sign some rogue data (for example, 
a legally binding contract – if the smart card is used for law-strong digital signature). The operation 
completes but the user never knows that their private key was just used against their will.  
 
The countermeasure to prevent this attack is to use a "single-access device driver" architecture. 
With this type of architecture, the operating system enforces that only one application can have 
access to the serial device (and thus the smartcard) at any given time. This prevents the attack but 
also lessens the convenience of the smartcard because multiple applications can not use the services 
of the card at the same time.  
 
Another way to prevent the attack is by using a smartcard that enforces a "one private key usage per 
PIN entry" policy model. In this model, the user must enter their PIN every single time the private 
key is to be used and therefore the Trojan horse would not have access to the key. This is also rarely 
convenient for the end user experience. 

3.3.4 POWER ANALYSIS 
 
Another possible attack is power analysis, in which we measure the fluctuations in the current 
consumed by the device. The various instructions cause different levels of activity in the instruction 
decoder and arithmetic units; they can often be quite clearly distinguished, and parts of algorithms 
can be reconstructed. 
 
These techniques fall into the category of information monitoring and they are of great concern 
because a very large number of vulnerable products are on the market today. The attacks are easy to 
implement, can be automated (and so can be used by low-skill attackers) have a very low cost per 
device, and are non-invasive. A computer will locate correlated regions in a device's power 
consumption. 
 
Simple Power Analysis involves directly observing a system’s power consumption to obtain 
informations on the sequence of instructions executed. If the attacker has access to just 1 
transaction, a limited number of informations can be leaked. Attackers with access to multiple 
transactions, and with knowledge of the internal mechanisms of the particular chipset in use, can be 
more and more challenging. Kocher54, along with a complete description of this technique, explains 
how DES can be broken with it, if poorly implemented in hardware, and how this attack can be 



easily averted by avoiding certain conditions, i.e. by avoiding that key material is used to choose 
between two branches of a jump. 
 
DPA is based on the phenomenon that storing a 1-bit in a flip-flop consumes typically more power 
than a 0-bit. Also, state changes typically cause extra power consumption. In addition to large-scale 
power variations due to the instruction sequence, there are effects correlated to data values being 
manipulated. These variations tend to be smaller and are sometimes overshadowed by measurement 
errors and other noise, but there are good techniques for treating such problems55. In such cases, it is 
still often possible to compromise the system using statistical functions tailored to the target 
algorithm. 

Using a 10-15 ohm resistor in the power supply, we can measure with an analog/digital converter 
the fluctuations in the current consumed by the card. Preferably, the recording should be made with 
at least 12-bit resolution and the sampling frequency should be an integer multiple of the card clock 
frequency. Drivers on the address and data bus often consist of up to a dozen parallel inverters per 
bit, each driving a large capacitive load. They cause a significant power-supply short circuit during 
any transition. Changing a single bus line from 0 to 1 or vice versa can contribute in the order of 
0.5-1 mA to the total current at the right time after the clock edge, such that a 12-bit ADC is 
sufficient to estimate the number of bus bits that change at a time. 
 
SRAM write operations often generate the strongest signals (a short circuit, in practice). By 
averaging the current measurements of many repeated identical transactions, we can even identify 
smaller signals that are not transmitted over the bus. Signals such as carry bit states are of special 
interest, because many cryptographic key scheduling algorithms use shift operations that single out 
individual key bits in the carry flag. Even if the status-bit changes cannot be measured directly, they 
often cause changes in the instruction sequencer or microcode execution, which then cause a clear 
change in the power consumption. 
 
The various instructions cause different levels of activity in the instruction decoder and arithmetic 
units and can often be quite clearly distinguished, such that parts of algorithms can be 
reconstructed. Various units of the processor have their switching transients at different times 
relative to the clock edges and can be separated in high-frequency measurements. 
 
Public key algorithms can be analyzed using DPA by correlating candidate values for computation 
intermediates with power consumption measurements. For modular exponentiation operations, it is 
possible to test exponent bit guesses by testing whether predicted intermediate values are correlated 
to the actual computation54. The same study shows that it is possible to reverse-engineer even 
unknown algorithms and protocols. In general, signals leaking during asymmetric operations tend to 
be much stronger than those from many symmetric algorithms, for example because of the 
relatively high computational complexity of multiplication operations. As a result, implementing 
effective SPA or DPA countermeasures can be challenging. 

DPA can be used to break implementations of almost any symmetric or asymmetric algorithm. For 
example, a 128-bit Twofish secret key, which is considered to be safe, was recovered from a smart 
card after observing 100 independent encryptions56. In this case we can easily see that DPA reveals 
1 to 2 bits of information per encryption.  

The only reliable solution to DPA involves designing cryptosystems with realistic assumptions 
about the underlying hardware. However, there are techniques for preventing DPA and related 
attacks. These attacks fall roughly into three categories. 



Firstly we can reduce signal size, such as by using constant execution path code, choosing 
operations that leak less information in their power consumption or adding extra gates to 
compensate for the power consumption.Unfortunately such signal size reduction cannot reduce the 
signal size to zero and an attacker with an infinite number of samples will still be able to perform 
DPA on the signal. 

Secondly we may introduce noise into power consumption measurements but like in the previous 
case, an infinite number of samples will still enable statistical analysis. In addition, execution 
timing and order can be randomized. Designers and reviewers must approach temporal obfuscation 
with great caution because many techniques can be used to bypass or compensate for these effects. 

A final approach involves using non-linear key update procedures. For example, hashing a 160-bit 
key with SHA should effectively lose all partial information an attacker might have gathered about 
the key. Similarly, aggressive use of exponent and modulus modification processes in public key 
schemes can be used to prevent attackers from gathering data across large numbers of operations. 
Key use counters can prevent attackers from obtaining large numbers of samples. 

3.3.5 ELECTROMAGNETIC ANALYSIS 
 
An attack with strong similarities with DPA is EMA, ElectroMagnetic Analysis. The idea of this 
attack is to measure the field radiated by the processor and correlate it to the activities of the 
processor. An article57 shows that the electromagnetic attack obtains at least the same result as 
power consumption and consequently must be carefuly taken into account. 

3.3.6 FAULT GENERATION ATTACKS 
 
Fault generation attacks rely on stressing a card processor in order to make it perform illegal 
operations or give faulty results. There is a wild variety of forms these attacks can assume. 
 
Sometimes, we will be playing around with the supply voltage and clock signal. Under-voltage and 
over-voltage attacks can be used to disable protection circuits or force processors to do the wrong 
operations. Power and clock transients can also be used to affect the decoding and execution of 
individual instructions. By varying the parameters, the CPU can be made to execute a number of 
completely different wrong instructions. Sometimes it can be fairly simple to conduct a systematic 
search.  
 
Some examples: for the PIC16C8458 microcontroller, a trick has become widely known that 
involves raising VCC to VPP during repeated write accesses to the security bit. This can often clear 
it without erasing the remaining memory.  
 
For the DS500059 security processor, a short voltage drop sometimes released the security lock 
without erasing secret data. Processors like the 8752 that can be used with both internal and external 
memory but that limit the switch between them to resets have been read out using low voltages to 
toggle the mode without a reset. Low voltage can facilitate other attacks too: at least one card has an 
on-board analogue random number generator, used to manufacture cryptographic keys and nonces, 
which will produce an output of almost all 1's when the supply voltage is lowered slightly. 
 
Other times, normal physical conditions, such as temperature, are altered in order to gain access to 
sensitive information on the smartcard. Other physical attacks that have proven to be successful 
involve an intense physical fluctuation at the precise time and location where the PIN verification 
takes place. Thus, sensitive card functions can be performed even though the PIN is unknown. This 



type of attack can be combined with the logical attack mentioned above in order to gain knowledge 
of the private key.  
 
Power and clock transients can be used in some processors to affect the decoding and execution of 
individual instructions. In a glitch attack, we deliberately generate a malfunction that causes one or 
more transistors to adopt the wrong state.  

Every transistor and its connection paths act like an RC element with a characteristic time delay; the 
maximum usable clock frequency of a processor is determined by the maximum delay among its 
elements. Similarly, every flip-flop has a characteristic time window (of a few picoseconds) during 
which it samples its input voltage and changes its output accordingly. This window can be 
anywhere inside the specified setup cycle of the flip-flop, but is quite fixed for an individual device 
at a given voltage and temperature.  

So if we apply a clock glitch (a clock pulse much shorter than normal) or a power glitch (a rapid 
transient in supply voltage), this will affect only some transistors in the chip. By varying the 
parameters, the CPU can be made to execute a number of completely different wrong instructions, 
sometimes including instructions that are not even supported by the microcode. Glitches can also 
aim to corrupt data values as they are transferred between registers and memory.  

Although we do not know in advance which glitch will cause wrong instructions in a specific chip, 
it can be found relatively easy by a systematic search60. Glitch attacks seem to be most useful in 
practical attacks47. 

A typical subroutine found in security processors is a loop that writes the contents of a limited 
memory range to the serial port: 

1 b = answer_address 
2 a = answer_length 
3 if (a == 0) goto 8 
4 transmit(*b) 
5 b = b + 1 
6 a = a - 1 
7 goto 3 
8 … 

We can look for a glitch that increases the program counter as usual but transforms either the 
conditional jump in line 3 or the loop variable decrement in line 6 into something else. Finding the 
right glitch means operating the card in a repeatable way. All signals sent to it have to arrive at 
exactly the same time after reset for every test run. Many glitches can be tested for every clock 
cycle, until one of them causes an extra byte to be sent to the serial port. Repeating it causes the 
loop to dump the remaining memory, which if we are lucky will include the keys we are looking 
for.  
 
Conditional jumps create windows of vulnerability in the processing stages of many security 
applications that often allows us to bypass sophisticated cryptographic barriers by simply 
preventing the execution of the code that an authentication attempt was unsuccessful. Output loops 
are just one target for glitch attacks. Others are checks of passwords, access rights and protocol 
responses, where corruption of a single instruction can defeat the protection.  
 
A possible software countermeasure might be to avoid single-point-of failure instructions. This was 
common enough in the old days of unreliable hardware: a senior Cambridge computer scientist 



recalls that in the 1950's a prudent system programmer was someone who, having masked off three 
bits, would verify that the result did not exceed seven!  

Hardware countermeasures include independent internal clock generators that are only PLLs 
synchronized with the external reference frequency, but this solution has several disadvantages: 
PLLs are large, require a lot of time to stabilize, and are extremely sensitive to external conditions. 
A more extreme, but potentially more beneficial solution would be to eliminate completely the 
clock, transforming card processors in self timed asynchronous circuits61. Then, the external clock 
will be used as a reference only for communication: thus, clock glitches will just cause data 
corruption. As an additional benefit, small bit-wise or nibble-wise self-timed circuits operating at a 
high rate can easily outperform slowly clocked parallel circuits, while reducing silicon area. At the 
same time, asynchronous internal operation makes analysis of the power signature difficult, since 
dual-rail encoded data drastically reduces data dependent power consumption, removing any useful 
power signature. Self-timed circuits are even less susceptible to power glitches. 

As a general rule: unusual voltages and temperatures can avert EEPROM write operations. For this 
reason, some security processors have sensors that cause a reset when voltage or other 
environmental conditions go out of range. But any kind of environmental alarm will cause some 
degradation in robustness. For example, one family of smart-card processors was manufactured 
with a circuit to detect low clock frequency and thus prevent single stepping attacks. However, the 
wild fluctuations in clock frequency that frequently occur when a card is powered up and the supply 
circuit is stabilizing, caused so many false alarms that the feature is no longer used by the card's 
operating system. Its use is left to the application programmer's discretion. Few of them bother; 
those who do try to use it discover the consequences for reliability. So many cards can be single-
stepped with impunity. 
 
The critical question is always whether an opponent can obtain unsupervised access to the device. If 
the answer is no, then relatively simple measures may suffice. For example, the VISA security 
module is vulnerable to people with occasional access: a service engineer could easily disable the 
tamper protection circuitry on one of her visits, and extract key material on the next. But this is not 
considered to be a problem by banks, who typically keep security modules under observation in a 
computer room, and control service visits closely. 
 
But in an increasing number of applications, the opponent can obtain completely unsupervised 
access, and not just to a single instance of the cryptographic equipment but to many of them. This is 
the case that most interests us: it includes pay-TV smartcards, prepayment meter tokens, remote 
locking devices for cars and SIM cards for GSM mobile phones. Many such systems are already the 
target of well funded attacks. 
 

3.3.7 DIFFERENTIAL FAULT ANALYSIS 
 
Differential fault analysis (DFA) is a powerful attack on crypto systems embodied in devices such 
as smart cards, announced by Eli Biham and Adi Shamir in a paper62. If the device can be made to 
deliver erroneous output under stress (heat, vibration, pressure, radiation, whatever) then a 
cryptanalyst comparing correct & erroneous outputs has a dangerous entry point.  
 
DFA breaks DES with 200 cyphertexts in which one-bit errors have been introduced63. All previous 
attacks required trillions. The fault model they used had been proposed by Boneh and others64 and 
its effects investigated further65 66. It assumes that by exposing a processor to a low level of ionising 
radiation, or some other comparable insult, that one-bit errors can be induced in the data used and 



specifically in the key material fed into the successive rounds. In addition, it has been shown67 that 
this method could be extended to reverse engineer algorithms whose structure is unknown. In each 
case, the critical observation is that errors that occur in the last few rounds of the cipher leak 
information about the key, or algorithm structure, respectively. In Boneh’s work it is shown that a 
similar fault model could be indeed applied to public key systems, by factoring an RSA modulus 
with a given number of faulty signatures. 
 
There is still discussion, however, on the true generality of this attack. Paillier, in a recent paper68, 
shows that under slightly modified assumptions, the DFA could be made not polynomial and would 
simply result in the loss of some key-bits, and proves the existence of cryptosystems on which DFA 
cannot reach the workfactor announced by Biham and Shamir. Other criticism was drawn by the 
fact that in many security processors the key material is held in EEPROM together with several 
kilobytes of executable code; so it is likely that a random one-bit error which did have an effect on 
the device's behaviour would be more likely to crash the processor or yield an uninformative error 
than to produce a faulty ciphertext of the kind required for the above attacks. 
 
However, Anderson and Kuhn demonstrated69 the ability to attack RSA or DSA by inducing faults 
not in the key material, but in the algorithm, by using the glitch technique we explained earlier. In 
particular the so-called Lenstra attack on RSA is interesting. If a smartcard computes an RSA 
signature, S, on a message M, modulo n = p*q by computing it modulo p and q separately and then 
combining them using the Chinese Remainder Theorem, and if an error can be induced in either of 
the former computations, then we can factor n at once. If e is the public exponent, and the signature 
S = Md (mod pq) is correct modulo p but incorrect modulo q, then we will have p = gcd(n; Se- M) 
 
This is ideal for a glitch attack. As the card spends most of its time calculating the signature mod p 
and mod q, and almost any glitch that affects the output will do, we do not have to be selective 
about where in the instruction sequence the glitch is applied. Since only a single signature is 
needed, the attackcan be performed online (while performing a transaction for example !). 
 
DES attacks are also pretty straightforward, if attacker can choose which instructions will fail after 
a glitch. For example he could remove remove one of the 8-bit XOR operations that are used to 
combine the round keys with the inputs to the S-boxes from the last two rounds of the cipher, and 
repeat this for each of these key bytes in turn. The erroneous ciphertext outputs that he would 
receive as a result of this attack will each differ from the genuine ciphertext in the output of usually 
two, and sometimes three, S-boxes. Using the techniques of differential cryptanalysis, the attacker 
could obtain about five bits of information about the eight keybits that were not XOR’ed as a result 
of the induced fault. So, for example, six ciphertexts with faulty last rounds could give away about 
30 bits of the key, leaving an easy keysearch. 
 
An even faster attack is to reduce the number of rounds in DES to one or two by corrupting the 
appropriate loop variable or conditional jump, as in the protocol attack described above. Then the 
key can be found by inspection. The practicality of this attack depends on the implementation 
detail. 
 
Thus DES can be attacked with somewhere between one and ten faulty ciphertexts, if we assume 
that we will be able to target a particular instruction. Is that realistic ? In most smartcards, the 
manufacturer supplies a number of routines in ROM. Though sometimes presented as an `operating 
system', the ROM code is more of a library or toolkit that enables application developers to manage 
communications and other facilities. Its routines usually include the DES algorithm (or a proprietary 
algorithm such as Telepass), and by buying the manufacturer's smartcard development toolkit (for 



typically a few thousand dollars) an attacker can get full documentation plus real specimens for 
testing. In this case, individual DES instructions can be targeted. 
 
When confronted with an unfamiliar implementation, we may have to experiment somewhat (we 
have to do this anyway with each card in order to find the correct glitch parameters). However the 
search space is relatively small, and on looking at a few DES implementations it becomes clear that 
we can usually recognise the effects of removing a single instruction from either of the last two 
rounds. (In fact, many of these instructions yield almost as much information when removed from 
the implementation as the key XOR instructions do). We can also apply clock and power glitches 
until simple statistical tests suddenly show a high dependency between the input and output bits of 
the encryption function, indicating that we have succeeded in reducing the number of rounds. 
 

Even if facing an unknown block cipher DFA can be of use. Biham and Shamir show that under 
their assumption the structure of an algorithm such as DES can be sketched out with about 500 
ciphertext, while with 10.000 ciphertexts the complete S-boxes and all details of DES can be 
reconstructed. Anderson and Kuhn demonstrated that instruction glitches are even more effective in 
reconstructing algorithms. As we said before, secrecy should never reside in algorithms; however, if 
it is the case that an algorithm must be kept secret, it should be designed to be complex to 
deconstruct, with large S-boxes kept in EEPROM nd designing the key schedule so that the keys 
from a small number of rounds are not enough for a break.  

The obvious defense against DFA, however, is to add error-checking to the cryptographic device. If 
it never delivers erroneous output, DFA becomes impossible. If erroneous output is made rare 
enough, DFA becomes impractical. There are a number of papers proposing error checking 
techniques70. We will just sum them up. 

A first, obvious but naïve protection would be to perform the encryption twice (or more times), 
compare the results, and reject them if they were not equal (or implement a voting scheme). The 
goal is to find methods more efficient than that. Two general mechanism that have been proposed 
are parity checks and modular arithmetic checks. These are powerful, but not sufficient, since they 
can protect many, but not all cryptographic operations. Let’s see briefly why, beginning with parity. 
 
The bit parity of a collection of bits does not change if the bits are permuted. Parity-checking, then, 
can protect any cryptographic operation that amounts to a permutation of bits. This covers several 
operations which are subsets of full bitwise permutations. Byte or block permutations, circular 
shifts, key scheduling for IDEA71 or for at least some versions of CAST. It also covers all 
operations equivalent to the null permutation, storage & retrieval or transmission & reception of 
some value.  

Concatenate two or more collections of bits into a larger collection and the bit parity of the result is 
the XOR of the parities of the inputs. Parity-checking, then, can protect any cryptographic operation 
that consists of concatenating bits, or the inverse, splitting a large object up into parts.  

Parity-checking can also protect the XOR operation which is so common in cryptography since the 
bit parity of the result of an XOR is the XOR of the parities of the inputs. 

What about arithmetic checking ? Any arithmetic operation on integers can be checked by 
performing the same operation modulo any convenient base. Using a larger base, or checking 
against more than one base improves the odds of catching an error. Schoolchildren check their 
arithmetic by "casting out nines", repeatedly adding the digits of their operands to reduce them to 



values mod 9. They could get a stronger check by casting out 99s, adding pairs of digits to get 
values mod 99. Or trios for mod 999 or.... A similar technique works on computers, adding up 
groups of n binary digits to get values mod 2^n-1.  

Break a number up into 3-bit groups, sum the groups (repeating if necessary) and you get its value 
mod 7. Use 5-bit groups, get mod 31. Do both and you're effectively checking mod 217 since 
7*31=217. 

There are, however, complications: for example, if you're checking an addition of two 32-bit 
numbers, you must check against a 33-bit result. The result checked must include the carry bit or 
the modular check won't work correctly. Once you've done the check, you can discard the carry bit 
if that's what your algorithm requires, for example if it uses arithmetic mod 2^32.  

Similarly, checking a multiplication of two 32-bit numbers requires a 64-bit result as input to the 
modular check calculation. Checking a 32-bit division or modulo calculation requires two 32-bit 
results, quotient & remainder. This might be a major problem in the constrained environment of 
smartcard hardware design. Checking a calculation such as IDEA’s multiplication mod 2^16+1 is 
certainly possible, and may not even be problematic if your smart card has a 32-bit CPU in it, but it 
is far from clear that it will be practical in all situations. 

Let’s see examples of applications of this technique, for instance an application to Linear Feedback 
Shift Registers. LFSRs are a staple of stream cipher design. They can fairly easily be protected 
against DFA with parity-check logic plus a flip-flop. Consider an LFSR of the configuration which 
XORs some Boolean constant into the register whenever the output bit is one. When a zero is 
output, the parity of the register does not change.  

When a one is output, that changes the parity. If the XOR changes the parity back, then overall the 
parity does not change. The parity of the register is then constant. It cannot possibly be a maximal 
period LFSR since it does not cycle through all values, only (at most) the half of them with that 
parity.  

For the LFSR to have maximum period, the parity must sometimes change. It clearly does not 
change on zero output & if it sometimes changes on one, it must always do so since the XOR is 
with a constant. So the parity of the shift register contents of a maximal period LFSR changes 
whenever a one bit is output. Initialize a flip-flop with the initial parity of the shift register. Flip it 
every time a one is output. Check it against the register parity periodically. This protects any 
maximal period LFSR against errors at very low cost. 

Let’s see how we can protect the substitution tables or S-boxes that are used in many ciphers (DES, 
CAST…). Protecting them requires an extended version of parity checking. Consider the F function 
in the second version of CAST. All of this cipher, except the F-function and key scheduling are 
easily protected by parity checks, since they only use XORs and swaps. 

The F function inputs are a 32-bit round key & 32-bit text block. The output is a 32-bit result. XOR 
key and text, split the 32-bit result into four bytes, pass each through a different S-box, and XOR 
the four 32-bit S-box outputs to get the 32-bit result. To protect this, extend each S-box row from 
32 to 34 bits. At S-box setup time, calculate the parity of each 32-bit S-box row & store that in the 
33rd bit of the row. Also find the parity of the corresponding S-box input byte & store that in the 
34th bit of the row.  



The encryption is exactly as described above except that the S-box rows, the four-way XOR & the 
its result are all 34-bit. Check the 33rd bit of that result against the parity of the 1st 32 bits. This 
checks the read of S-box memory & the XORs.  

Check the 34th bit against the parity of the two inputs, the round key & the text (concatenated or 
XORd together). This should match since the 34th result bit is the XOR of the four S-box 34th bits 
which are the parities of the S-box input bytes which are the four bytes of the XORd key & text.  

These two bits together, then, protect the entire F function. Add parity checks outside the function 
and we can protect all of CAST against DFA reasonably cheaply.  

CAST is not the only cipher that can be entirely protected with techniques shown here. GOST is 
one other. 

3.3.8 COMMON COUNTERMEASURES AGAINST NON INVASIVE TECHNIQUES 
 
Many non-invasive attacks require the attacker to predict the time at which a certain instruction is 
executed. A strictly deterministic processor that executes the same instruction n clock cycles after 
each reset, if provided with the same input at every cycle, makes this easy. 

The obvious countermeasure is to insert random time delays between any observable reaction and 
critical operations that might be subject to an attack. If the serial port were the only observable 
channel, then a few random delay routine calls controlled by a hardware noise source would seem 
sufficient. However, since attackers can use cross-correlation techniques to determine in real-time 
from the current fluctuations the currently executed instruction sequence, a few localized delays 
will not suffice. 

A study47 therefore strongly recommends introducing timing randomness at the clock-cycle level. A 
random bit-sequence generator that is operated with the external clock signal should be used to 
generate an internal clock signal. 

To introduce even more non-determinism into the execution of algorithms, it is conceivable to 
design a multi-threaded processor architecture72 that schedules the processor by hardware between 
two or more threads of execution randomly at a per-instruction level. Such a processor would have 
multiple copies of all registers, and the combinatorial logic would be used in a randomly alternating 
way to progress the execution state of the threads represented by these respective register sets. 

3.4 OTHER DANGERS 

3.4.1 DATA REMANENCE 
 
Smart cards, as all magnetic and electronic media, suffer from data remanence problems. Recent 
research73 have shown various dangers in the usage of EEPROM and Flash memories. While 
leaving the details to the referred paper, we will quote some of the conclusions and design 
suggestions. First of all, cryptovariables should not be stored in RAM for long periods of time 
(neither on the smart card, nor on the PC host system). Move them around from time to time. 
 
EEPROM/Flash cells should be “cycled” 10-100 times with random data before writing anything 
sensitive to them. The use of fresh cells creates biases that can be used to detect the first value 
written to a cell long after its deletion. 
 



Researches made on crypto hardware (such as RSA accelerators) on hot carrier and 
electromigration effects make us wonder about any possible residuates of data remaining on the 
crypto coprocessor of cards, but as of the time of writing there are no researches we are aware of on 
this subject. 
 
If the flash RAM devices are “intelligent” (i.e. they use wear-levelling techniques to try to optimize 
the usage of Flash, or to avoid unnecessary and time consuming block-erase commands) they may 
leave copies of your sensitive data around in mapped-out memory, even long after you think you 
erased or changed that. This is very worrying, since if they are properly implemented they won’t let 
you override this behaviour. 
 
As a final note remember that the ever increasing density of semiconductor memory and the usage 
of exotic techniques such as multilevel storage is one of the best defenses available to make it 
increasingly expensive and difficult to recover data from devices. In addition all these techniques 
should be counted as invasive attacks, since they usually require destruction of the token. 
 
This danger should not be underrated. There’s an astounding report69 about a security module used 
in a bank. Many banks use a system devised by IBM and refined by VISA to manage the personal 
identication numbers (PINs) issued to customers for use with automatic teller machines74. The PIN 
is derived from the account number by encrypting it with a “PIN key”, decimalising the result and 
adding a decimal “offset” (without carry) to get the PIN the customer must enter. (The offset's 
function is to enable the customer to choose his own PIN).  
 
The function of the security module is to perform all these cryptographic operations, plus associated 
key management routines, in trusted hardware, so as to support a dual control policy: no single 
member of any bank's staff should have access to a customer PIN75. Thus, for example, the module 
will only perform a “verify PIN” command if the PIN is supplied encrypted under a key allocated to 
an automatic teller machine or to a corresponding bank. In this way, bank programmers are 
prevented from using the security module as an oracle to perform exhaustive PIN search. 
 
In order to enforce this, the security module needs to be able to mark keys as belonging to a 
particular functionality class. It does this by encrypting them with 3DES under one of 12 pairs of 
DES master keys that are stored in low memory. Thus for example ATM keys are stored encrypted 
under master keys 14 and 15, while the working keys used to communicate with other banks are 
stored encrypted under master keys 6 and 7. The encrypted values of long term keys such as the 
PIN key are often included inline in application code and are thus well known to the bank's 
programming staff. So security depends on the module’s tamper resistance, and this is provided 
for by lid switches that cut power to the key memory when the unit is opened (it needs servicing 
every few years to change the battery). Master keys are loaded back afterwards in multiple 
components by trusted bank staff. Looking at one such device, which dated from the late 1980's, 
Anderson and Kuhn found that the master key values were almost intact on power-up. The number 
of bits in error was of the order of 5-10%. The almost-correct values had been “burned in” to the 
static RAM chips.  
 
This level of memory remanence would be alarming enough. However, it has a particularly 
pernicious and noteworthy interaction with DES key parity in this common application. If each 
DES key is wrong by five bits, then the effort involved in searching for the 10 wrong bits in a 
double DES key might be thought to be 112-choose-10 operations. Each operation would involve 
(a) doing a 2-key 3DES decryption of a 56 bit PIN key whose enciphered value is, as we noted, 
widely known (b) in the 2- 8 of cases where this result has odd parity, enciphering an account 
number with this as a DES key to see if the (decimalised) result is the right PIN. The effort is about 



3 times 112-choose-10 DES operations, approximately say 250. But it would probably be cheaper to 
do a hardware keysearch on the PIN key directly than to try to implement this more complex search 
in either hardware or software. 
 
However, the bytewise nature of the DES key redundancy reduces the effort by several orders of 
magnitude. If no key byte has a double error, then the effort is seven tries for each even parity byte 
observed, or 3 times 710, or about 230 which is easy. If there is one key byte with a double error, the 
effort is 238, giving a search of 240 DES operations, totally feasible. 

3.4.2 PIN GUESSING 
 
Most cards are PIN-protected to avoid the risk that stolen or lost devices are fraudulently used. In 
most cases, users are allowed to choose and change the PIN protecting the device. This can lead to 
poor PINs (day and month of birth, for example), but has a fundamental strength: it does NOT rely 
on a (potentially poor) algorithm to choose numbers. As shown in research76 this can make the 
traditional “three attempts before lock” paradigm inadequate. Another interesting research77 shows 
how to design authentication and verification protocols that are resistant to “password guessing” 
attacks. Still another69 shows how PIN assignment protocols can come under attack – or be plainly 
inadequate. 
 
We would like to stress again that there’s a time frame between when a smart card is lost and when 
the user realizes it and can safely revoke it. In this time frame, the PIN is the only barrier that 
prevents abuse of the device. 

3.4.3 SOCIAL ENGINEERING ATTACKS 
 
In computer security systems, this type of attack is usually the most successful, especially when the 
security technology is properly implemented and configured. Usually, these attacks rely on the 
faults in human beings. A common example of a working social engineering attack has a hacker 
impersonating a network service technician. The serviceman approaches a low-level employee and 
requests their password for network servicing purposes. With smartcards, this type of attack is a bit 
more difficult. Most people would not trust an impersonator wishing to have their smartcard and 
PIN for service purpose. 

3.5 TRUE TAMPER SAFE DESIGN: THE MILITARY APPROACH  

One application in which capable, motivated opponents may be assumed, and where billions of 
dollars are spent on thwarting them, is the security of nuclear weapons. The threat here are nothing 
less than rogue states fronted by terrorist commando teams, operating in cahoots with subverted 
military personnel – typical “class 3” opponents. The U.S.A. has led the development of a control 
technology, now partially shared with other nuclear and near-nuclear nations, and the following 
account is drawn from a previously quoted article60. 

Following the Cuban missile crisis, there was concern that a world war could start by accident - for 
example, by a local commander under pressure feeling that `if only they knew in Washington how 
bad things were here, they would let us use the bomb'. There was also concern that U.S. nuclear 
weapons in allied countries might be seized by the ally in time of tension, as U.S. forces there had 
only token custodial control. These worries were confirmed by three emergency studies carried out 
by Jerome Wiesner, the presidential science adviser.  



President Kennedy's response was National Security Action Memo no. 160, which ordered that 
America's 7,000 nuclear weapons then in countries from Turkey to Germany should be got under 
positive control, or got out78.  

The U.S. Department of Energy was already working on safety devices for nuclear weapons, the 
basic principle being that a unique aspect of the environment had to be sensed before the weapon 
would arm. For example, missile warheads and some free-fall bombs expected to experience zero 
gravity, while artillery shells expected to experience an acceleration of 20,000 g. There was one 
exception though: atomic demolition munitions. These are designed to be taken from their storage 
depots to their targets by jeep or helicopter, or even hand carried by special forces, and then 
detonated using time fuses. So there is no scope for a unique environmental sensor to prevent 
accidental detonation.  

The solution then under development was a secret arming code, which activated a solenoid safe 
lock buried deep in the plutonium pit at the heart of the weapon. The main engineering problem was 
that when the lock was exposed, for example by a maintenance engineer replacing the power 
supply, the code might become known (as with the VISA security module mentioned above). So it 
was not acceptable to have the same code in every weapon, and group codes had to be used; the 
same firing code would be shared by only a small batch of warheads.  

But, following the Kennedy memo, it was proposed that all nuclear bombs should be protected 
using code locks, and that there should be a `universal unlock' action message that only the 
president or his legal successors could give. How could this be securely translated to a large number 
of individual firing codes, each of which would enable a small batch of weapons? The problem 
became worse when the Carter administration's policy of `measured response' created a need for a 
wide variety of `selective unlock' messages, giving the president options such as enabling the use of 
nuclear artillery and air defence weapons against a Soviet incursion into Germany. It became worse 
still with concern that a Soviet decapitation strike against the U.S. national command authority 
might leave the arsenal intact but useless. As is now well known, the solution lies in the branch of 
cryptomathematics known as `secret sharing'71, whose development it helped to inspire, and which 
enables weapons, commanders and options to be linked together with a complexity limited only by 
the available bandwidth.  

In modern weapons the solenoid safe locks have been superseded by PALs - prescribed action links 
- about whose design details there’s literally no unclassified material. However, it is known that 
PALs are considered sufficient only when they can be buried in the core of a large and complex 
weapon. With simple weapons (such as atomic demolition munitions) it is not considered feasible to 
deny access to a capable motivated opponent. These weapons are therefore stored in sensing 
containers called PAPS (prescribed action protective system) which provide an extra layer of 
protection. 

Both the big-bomb and PAPS-enhanced systems include penalty mechanisms to deny a successful 
thief access to a usable weapon. These mechanisms vary from one weapon type to another but 
include gas bottles to deform the pit and hydride the plutonium in it, shaped charges to destroy 
components such as neutron generators and the tritium boost, and asymmetric detonation that 
results in plutonium dispersal rather than yield. Whatever the combination of mechanisms used in a 
given design, it is always a priority to destroy the code in the switch; it is assumed that a renegade 
government prepared to deploy ``terrorists'' to steal a shipment of bombs would be prepared to 
sacrifice some of the bombs (and some technical personnel) to obtain a single serviceable weapon.  



To perform authorised maintenance, the tamper protection must be disabled, and this requires a 
separate unlock code. The devices that hold the various unlock codes - for servicing and firing - are 
themselves protected in similar ways to the weapons. We understand, for example, that after tests 
showed that 1 mm chip fragments survived the protective detonation of a control device carried 
aboard airborne command posts, the software was rewritten so that all key material was stored as 
two separate components, which were kept at addresses more than 1 mm apart on the chip surface.  

This highlights the level of care that must be taken when developing security processors that are to 
withstand capable attack. This care must extend to the details of implementation and operation. The 
weapons testing process includes not just independent verification and validation, but hostile `black 
hat' penetration attempts by competing laboratories or agencies. Even then, all practical measures 
are taken to prevent access by possible opponents. The devices (both munition and control) are 
defended in depth by armed forces; there are frequent zero-notice challenge inspections; and staff 
may be made to re-sit the relevant examinations at any time of the day or night.  

These mechanisms and procedures have so far succeeded in preventing rogue governments from 
stealing (as opposed to making) atomic weapons.  

The nuclear business also supplies the only examples known to us of tamper resistant packages 
designed to withstand a “class 3” opponent who can obtain unsupervised physical access. These are 
the missile sensors developed to verify the SALT II treaty79 - which was never deployed - and the 
seismic sensor package developed for test ban treaty verification, which was. In this latter system, 
the seismic sensors are fitted in a steel tube and inserted into a drill hole that is backfilled with 
concrete. The whole assembly is so solid that the seismometers themselves can be relied upon to 
detect tampering events with a fairly high probability. This physical protection is reinforced by 
random challenge inspections.  

So, if systems have to be protected against “class 3” opponents, we might hazard the following 
summary:  

?? if our goal is to merely detect tampering with a positive probability (as with treaty 
verification), then we can allow unsupervised access provided we are allowed to use a 
massive construction and to perform challenge inspections;  

?? if we wish to prevent the loss of a cryptographic key with near certainty (as with firing 
codes), then we had better use explosives and we had better also guard the device.  

The above analysis convinced us that military agencies have limited confidence in the ability of 
tamper-resistant devices (and especially portable ones) to withstand a “class 3” opponent with 
unsupervised access. A senior agency official confirmed that chip contents cannot be kept from a 
capable motivated opponent; at most one can impose cost and delay. A similar opinion was 
ventured by a senior scientist at a leading chip maker.  

Furthermore, the expense and inconvenience of the kind of protection used in the nuclear industry 
are orders of magnitude greater than even major banks would be prepared to tolerate. So what is the 
state of the art in commercial security processor design? They may be vulnerable to a class III 
opponent, but how about class II and class I?  

4 CLOSING REMARKS 

4.1 FOR FURTHER READING 
 



In addition to the references quoted throughout the text, there are additional texts and sites that can 
add informations to the rather synthetical descriptions in this article: 

4.1.1 SITES 
 
http://www.cl.cam.ac.uk/~mgk25/ 
http://www.geocities.com/ResearchTriangle/Lab/1578/smart.htm 
http://www.cl.cam.ac.uk/Research/Security/tamper/ 
http://www.usenix.org/events/smartcard99/ 
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